Performance under pressure

GAS DENSITY FOR DIVERS By Reilly Fogarty

Humans have survived in relative comfort at depths up to 2,271 feet, breathing gas more than 12 times the density of surface air, but despite their ability to function in extreme conditions, minor differences among gas selections can make or break dives at any depth.

For decades divers have found ways to mitigate the effects of pressure on the body without understanding them, but new research helps to explain human performance in challenging environments and provide evidence-based practices to minimize our risk in the water.

Gas density is one of the unknown mechanisms on the forefront of hyperbaric research. A recent paper1 by Gavin Anthony and Simon Mitchell brings together academic research and diving with a new understanding of gas requirements and how gas density can put divers at risk or help keep them safe.

EFFECTS OF GAS DENSITY 
Gas density is a simple concept with a complex but high-yield solution for two factors divers face: work of breathing (WOB) and carbon dioxide (CO2) elimination. Gas density is a measure of mass per unit volume in grams per liter (g/L), while WOB is an integral of pressure as a function of volume typically measured in kilopascals (kPa) or joules per liter (j/L).

High WOB means it takes more effort to take a breath, and increasing gas density means it takes more effort to move that gas. An increase in WOB results in increased CO2 production and a decreased ability to inhale fresh gas, which compounds the second issue: CO2 production and retention. High partial pressures of arterial CO2 (PaCO2) can cause narcosis, hypercapnia and loss of consciousness. Exertion (or mechanical failure in a rebreather) can also cause these conditions, but gas density affects a second mechanism that exacerbates the situation.

The mechanism that removes CO2 from the blood functions by a pressure gradient between the partial pressure of inhaled CO2 (PiCO2) and PaCO2. PaCO2 is typically two magnitudes larger than PiCO2 (5.2 x 10-2 atmospheres absolute of pressure (ATA) vs. ~ 3.9 x 10-4 ATA), allowing for rapid diffusion of CO2 from the blood into the pulmonary filter and out of the body. Increasing PiCO2 via increased gas density decreases this gradient and reduces the ability of the body to eliminate CO2, further exacerbating symptoms of CO2 retention.
DOING WORK 
Equipment, respiratory rate and many other factors can affect WOB. Equipment differences are typically small, and divers tend to manage other relevant factors before they enter the water, leaving divers to contend with gas density as a primary modifier of WOB in many situations and a focal point for hyperbaric researchers. These experts are increasingly finding that the effects of depth are more extensive than previously understood, and many are suggesting it may be time to reconsider how and what we choose to breathe. Anthony and Mitchell found that both rebreather and open-circuit divers retained a dangerous level of CO2 when their respired gas density reached 6.0g/L (normal air is approximately 1.293 g/L at 1 ATA) (Figure 1, Table 1). Previous studies2 found that CO2 retention during exercise at 6.8 ATA (8.79 g/L) resulted in two subjects requiring rescue from a wet pot (a hyperbaric chamber filled with water and pressurized to simulate a particular depth) due to CO2- induced incapacitation without any self-awareness of the symptoms. Further complicating the issue, Christian Lambertsen and his colleagues found that at just 4 ATA — the pressure we would experience at 99 feet of seawater (fsw), where the density of air is about 5.17 g/L — maximum expiratory gas flow and ventilation rate were nearly half of what they were at 1 ATA.3 The evidence appears to indicate that gas density has a profound effect on not just WOB and CO2 evolution and elimination but also our ability to effectively respire and exchange gas. Anthony and Mitchell summarize their research by recommending an ideal gas density of 5.2 g/L, with an absolute maximum of 6.2 g/L. These numbers correspond with air diving at 102 fsw and 128 fsw, respectively. These limits coincide with recreational limits and significantly decrease the maximum operating depth (MOD) of many common gases. Enriched-air nitrox with 32 percent oxygen (EANx 32) at 110 fsw and 130 fsw results in densities of 5.6 g/L and 6.54 g/L, respectively, surpassing both recommended and hard limits. Common technical gases such as trimix 18/35 (18 percent oxygen, 35 percent helium and the balance nitrogen) and trimix 10/70 (10 percent oxygen and 70 percent helium) experience the same restrictions. Trimix 18/35 reaches a full 6.0 g/L at just 230 fsw (with a typical MOD of 300 fsw), and trimix 10/70 reaches a notable 10.29 g/L at its MOD of 495 fsw, far exceeding maximum recommendations and the 8.79 g/L mark that required divers to be rescued from a wet pot in the study by Dan Warkander and colleagues.2 Helium appears to be the immediate solution for divers who are concerned about WOB and correlated medical issues (immersion pulmonary edema, CO2 retention, etc.) and for technical divers who are doing even normal dives to moderate depths. Seven times less dense than nitrogen, helium also ameliorates the severity of narcosis but brings with it a host of new obstacles, including extended decompression, cost and high-pressure neurological syndrome (HPNS) concerns. Our next steps depend heavily on the ongoing work of our hyperbaric community: In another decade we could have equipment that makes gas density a nonissue. For now we’re left to carefully mix our gases and learn all we can about human performance under pressure. AD

NOTES
 1. Anthony G, Mitchell S. Respiratory physiology of rebreather diving. In: Pollock NW, Sellers SH, Godfrey JM, eds. Rebreathers and Scientific Diving. Proceedings of NPS/ NOAA/DAN/AAUS June 16-19, 2015, Workshop. Durham, NC; 2016; 66-79. Available at: https://www.omao.noaa.gov/sites/default/files/documents/Rebreathers and Scientific Diving Proceedings 2016.pdf. Accessed March 25, 2019. 2. Warkander DE, Norfleet WT, Nagasawa GK, Lundgren CEG. CO2 retention with minimal symptoms but severe dysfunction during wet simulated dives to 6.8 ATA abs. Undersea Biomed. Res. 1990; 17(6):515-523. 3. Lambertsen CJ, Gelfand R, Lever MJ, Bodammer G, Takano N, Reed TA, et al. Respiration and gas exchange during a 14-day continuous exposure to 5.2% O2 in N2 at pressure equivalent to 100 FSW (4 ATA). Aerosp. Med. 1973; 44:844-849. 4. Doolette DJ, Mitchell SJ. Hyperbaric conditions. Comprehensive Physiol. 2011; 1:163-201

Categories

 2020
 2019
 2018
 2016
immersion and bubble formation Accidents Acid reflux Acute ailments After anaesthesia Air Quality Air exchange centre Air hose failure Airway control Alert Diver Magazine Alternative gas mix Altitude changes Altitude sickness Aluminium Oxide Ama divers Amino acids Anaerobic Metabolism Annual renewal Apnea Apnoea Archaeology Arterial gas embolism Arthroscopic surgery Aspirin Aurel hygiene BCD BHP BLS Back adjustment Back pain Back treatment Backextensors Badages Bag valve mask Bahamas Balancing Bandaids Barbell back squat Barometric pressure Barotrauma Basic Life Support Batteries Bench press Benign prostate hyperplasia Beth Neale Black Blood flow Blue Wilderness Blurred vision Boat safety Bone fractures Bouyancy compensators Boyle's Law Boyle\'s Law Bradycardia Brain Breast Cancer Breath Hold Diving Breath hold Breath-hold Breathing Gas Breathing Breathold diving Broken bones Bruising Bubbleformation Buddy Exercise Buoyancy Burnshield CGASA CMAS CO2 COVID-19 COVID CPR Cabin pressure Caissons diseas Camera settings Cancer Remission Cancer treatments Cancer Cannabis and diving Cannabis Cape Town Dive Festival Cape Town CapeTown Carbon dioxide Cardio health Cardiological Cardiomyopathy Chamber Safety Chamber science Charging batteries Charles' Law Charles\' Law Charles\\\' Law Charles\\\\\\\' Law Charles\\\\\\\\\\\\\\\' Law Charlie Warland Chemotherapy Chest compressions Chiropractic Citizen Conservation Cleaning products Coastalexcursion Cold Water Cold care ColdWater Cold Commercial diving Commercial schools Compressed gas Consercation Conservation Contaminants Contaminated air Coral Conservation Coral Reefs Corals Core strength Corona virus Courtactions Crohns disease Crowns Crystal build up Crystallizing hoses Cutaneous decompression DAN Courses DAN Profile DAN Researchers DAN medics DAN members DAN report DCI DCS Decompressions sickness DCS theories DCS DEMP DM training DNA DReams Dalton's Law Dalton\'s Law Dalton\\\'s Law Dalton\\\\\\\'s Law Dalton\\\\\\\\\\\\\\\'s Law Danel Wenzel Dauin island Deco dives Decompression Illness Decompression Sickness Decompression Stress Decompression illsnes Decompression treatment Decompression Deep diving Deep water exploration Delayed Offgassing Dental Diaphragms Diseases Dive Chamber Dive Computer Dive Destinations Dive H Dive Industry Dive Instruction Dive Instructor Dive Medical Form Dive Pros Dive Research Dive South Africa Dive Training Dive Travel Dive accidents Dive buddies Dive computers Dive excursions Dive fitness Dive gear Dive heallth Dive health Dive medicines Dive medicine Dive operators Dive planning Dive safety Dive safe Dive staff DiveLIVE Diveleader training Diveleaders Diver Health Diver Profile Diver infliencers Diver on surface Divers Alert Diving Divas Diving Kids Diving Trauma Diving career Diving emergencies Diving emergency management Diving fit Diving guidelines Diving injuries Diving suspended Diving Dizziness Dolphins Domestic Donation Dowels Dr Rob Schneider Drysuit diving Drysuit valves Drysuits Dyperbaric medicines EAPs EAP Ear pressure Ear wax Ears injuries Eco friendly Education Electronic Emergency action planning Emergency decompression Emergency plans Emergency underwater Oxygen Recompression Emergency Enviromental Protection Environmental factors Environmental impact Environmental managment Equalisation Equipment care Evacuations Evacuation Evaluations Even Breath Exercise Exhaustion Extended divetime Extinguisher Extreme treatments Eye injuries FAQ Failures Fatigue Faulty equipment Female divers Fillings Fire Coral Fire Safety Firefighting First Aid Equipment First Aid Kit First Aid Training First Aid kits Fish Identification Fish Fitness Training Fitness to dive Fitness Flying Fractures Francois Burman Fredive Free Student cover Free diving Free flow Freedive INstructor Freedive Training Freediver Freediving performance Freediving Gas Density Gas laws Gas mixes GasPerformance Gases Gastoeusophagus Gastric bypass Gastroenterologist Gear Servicing Gordon Hiles Great White Sharks Gutt irritations HCV HELP HIRA HMS Britanica Haemorhoid treatment Hazard Description Hazardous Marine life Hazardous marinelife Health practitioner Heart Attack Heart Health Heart Rate monitor Heart rates Heart rate Heart Heat stress Helium Hepatitis C Hepatitus B High temperatures Hip strength Hip surgery Hippocampus History Hot Humans Hydrate Hydration Hydrogen Hydroids Hydrostatic pressure Hyperbaric Chamber Hyperbaric research Hyperbarics Hypothermia Hypoxia IdentiFin Immersion Immine systems In Water Recompression Indemnity form Indian Ocean Indonesia Inert gas Infections Injections Instinct Instruction Instructors Insurance Integrated Physiology International travel International Interval training Irritation Joint pain KZN South Coast Kidneys Kids scubadiver KwaZulu Natal Labour laws Laryngospasm Lauren Arthur Learning to dive Legal advice Legislation Leukemis Liability Risks Liability releases Liability Life expectancy Lifestyle Lightroom editing Live aboard diving Liver Toxicity Liver diseas Low blood pressure Low pressure deterioration Low volume masks Lung Irritation Lung function Lung injuries Lung squeeze Lung surgery Lung MOD Maintenance Malaria Mammalian Dive Response Mammalian effect Marine Biology Marine Scientists Marine conservation Marine parks Marinelife Master scuba diver Maximum operating depth Medical Q Medical emergencies Medical questionaire Medical statement Medication Mehgan Heaney-Grier Mermaid Danii Mesophotic Middle ear pressure Mike Bartick Military front press Mixed Gas Mono Fins Mooring lines More pressure Motion sickness Mozambique Muscle pain Mycobacterium marinum Nausea Nautilus Neck pain Neurological assessments Nitrogen build up Nitrox No-decompression Non-rebreather Mask Normal Air Nosebleeds O2 providers O2 servicing OOxygen maintenance Ocean Research Ocean pollution Open water divers Orbital implants Oronasal mask Osteonecrosis Out and about Outreach Oxygen Cylinder Oxygen Units Oxygen deficit Oxygen deicit Oxygen dificiency Oxygen ears Oxygen equipment Oxygen masks Oxygen supply Oxygen therapy Oxygen P J Prinsloo PFI PJP Tech Part 3 Partner Training Philippine Islands Philippines Phillipines Photography Physioball Physiotherapy Pills Pistons Planning Plastic Pneumonia Pneumothorax Poison Pollution Pool Diving Post-dive Pre-dive Preparation Prepared diver Press Release Professional rights Provider course Pulmanologist Pulmonary Bleb Pulmonary Edema Pulse Punture wounds Pure Apnea Purge RAID South Africa RCAP REEF Radio communications Range of motion Rashes Rebreather diving Rechargeable batteries. Recompression chamber Recompression treatment Recompression Recycle Reef Conservation Reef surveyors Regulator failure Regulators Regulator Remote areas Renewable Report incidents Rescue Procedure Rescue breathing Rescue breaths Rescue training Rescue Resume diving Risk Assessments Risk assesments Risk assessment Risk elements Risk management SABS 019 SafariLive Safety Stop Safety SaherSafe Barrier Salty Wanderer Sanitising Sara Andreotti Saturation Diving Save our seas Science Scombroid Poisoning Scuba Air Quality Scuba Injury Scuba Instructor Scuba children Scuba dive Scuba health Scubalearners Sea Horses Sealife Shark Protection Shark Research Shark conservation Shark diving Sharks Shoulder strength Sideplank Signs and Symptoms Sit-ups Skin Bends Skin outbreak Skin rash Snorkeling Snorkels Sodwana Bay Solomon Islands South Africa Spinal pain Splits Squeezes Stability exercise Standars Stay Fit Stents Step ups Stroke Submerged Sudafed Sulawesi Supplemental oxygen Surface supplied Air Surfaced Surgeries Surgery Suspension training TRavel safety Tabata protocol Tattoes Technical Diving The Bends The truth Thermal Notions Tides Tips and trick Tooth squeeze Transplants Travel smarter Travel tips Travel Tropical Coastal Management Tunnelling Tweezers Ultrsound Umkomaas Unconsciousness Underground work Underwater hockey Underwater photographer Underwater photography Underwater pho University of Stellenbosch Urinary retention. Vaccines Vagus nerve Valsalva manoeuvers Vape Vaping Vasopressors Vasvagal Syncope Venting Virus infections Volatile fuels Washout treatments Wastewater Water Resistance Water Weakness Weigang Xu West Papua Wet diving bell Wetsuit fitting Wetsuits White balance Wide angles Winter Woman in diving Women In Diving SA Women in diving Work of Breathing Workout Wound dressings Wreck divers Wreck dive Wreckdiving Wrecks Yoga Youth diver Zandile Ndholvu Zoology abrasion acoustic neuroma excision air-cushioned alert diver altitude anemia antibiotics antiseptics bandages barodontalgia bent-over barbell rows bioassays body art breathing air calories burn carbon dioxide toxicity cardiovascular cerebrospinal fluid checklist chemo port child clearances closed circuit scuba currents cuts dead lift decompression algorithms decongestants decongestion dehydration dive injuries dive medicing dive ready child dive reflex dive tribe diver in distress diver rescue diver training dive diving attraction doctors domestic travel dri-suits drowning dry mucous membranes dry suits dry e-cigarettes ear spaces elearning electrolyte imbalance electroytes emergency action plans emergency assessment equalising equalizing exposure injuries eyes fEMAL DIVERS fire rescue fitnes flexible tubing frediving freedivers gas bubble gas poisoning gastric acid gene expression health heartburn histidine hospital humidity immersion and bubble formation immersion pulmonary edema (IPE jaundice join DAN knee longevity lower stress malaise marine pathogens medical issues medical procedures medical risk assesment medications mental challenge micro-organisims minor illness mucous membranes nasal steroids nasal near drowning nematocysts neurological newdivers nitrogen bubbles off-gassed operating theatre operations orthopeadic outgas pain perforation phillippines physical challenges pinched nerves plasters polyester-TPU polyether-TPU post dive posture preserve prevention psychoactive pulmunary barotrauma rebreather mask rebreathers retinal detachment risk areas safety stops saturation scissors scuba equipment scuba single use sinus infections smoking snorkeling. spearfishing sterilising stings strength sub-aquatic swimmers ears tattoo care tecnical diver thermal protection toxicity training trimix unified standards vision impaired warmers water quality