Taravana: Fact or Falacy?

BY DR DANILO CIALONI DMD
A unique form of decompression illness associated with breath-hold diving is discussed, including research and recommendations.
Decompression illness (DCI) is mainly associated with compressed gas diving or caisson work. However, since 1965, diving researchers have become increasingly aware of a curious cluster of neurological symptoms associated with breath-hold diving, but not attributed to hypoxia of ascent [1,2]. The condition, known as “taravana” amongst pearl divers of the Tuamotus (a chain of islands and atolls in French Polynesia), has increasingly become accepted as a unique form of DCI [3]. The typical presentation is a rapid onset of partial paralysis, visual problems, difficulties with hearing or speech [3], and even cases of loss of consciousness and death [4]. Although scans have confirmed that it is an injury to the brain [5,8], the underlying mechanism is not completely understood. For instance, it is not clear whether it is primarily the result of arterial gas embolism [9,10], or due to the formation of inert gas bubbles within the brain itself [4,11]. Either one or both of these mechanisms may be involved in developing taravana; conceivably, it might also be something much more complicated than the usual dichotomous understanding [12].
Bubble detection methods have been used quite widely to assess decompression stress. Similarly, they have been employed to predict the chances of developing decompression disorders following decompression. Of the various available methods, precordial Doppler and cardiac ultrasound are the best known. Doppler detections have confirmed the presence of bubbles in breath-hold divers [11]. However, Doppler bubblefindings have been somewhat at odds with the severity of symptoms that have been reported. Also, recent advances in ultrasound technology have made it more feasible to use cardiac ultrasound to better quantify the risk.
In 2013, the author of this article, together with a team of DAN Europe researchers, was able to show significant intracardiac bubbles following breath-hold diving using a two-dimensional cardiac ultrasound. Using conventional cardiac ultrasound methods and an established scoring method [13], significant bubbles were observed in a group of spearfishermen after performing repetitive breath-hold dives under laboratory conditions. Based on this discovery, the team decided to employ a well-recognised decompression algorithm to determine if it would be able to predict the accumulation of inert gas during breath-hold diving excursions associated with detectable bubbles. If so, and ifpost-diving bubbles could be predicted mathematically, this might suggest that the risks for developing taravana might be minimised by following the same principles used for safe decompression after compressed gas diving.
With this objective in mind, various repetitive breath-hold dive profiles were recorded for depth, dive time, bottom time, descent and ascent rates and gradient factors1 (GF), all calculated through the use of the Bühlmann ZH-16 Model C[13,14]. However, most of the profiles had very low GF,typically 33% or less of the maximum value. This approach seems unable to predict the appearance of inert gas bubblesfollowing breath-hold diving. Therefore, there is reason to suspect additional predisposing mechanisms. Something else must be involved that makes breath-hold divers uniquely vulnerable compared to the inert gas dynamics associated with compressed gas diving.
In evaluating various spearfishing divers, the physiology of breath-hold diving, and the specific practices associated with taravana, a new theory has emerged. It would seem that it may be due to the following factors, namely the pooling of blood in the lungs during the dive with an associated additional uptake of inert gas from the lungs to the blood. This would be followed by a rapid shift of blood upon returning to the surface that might explain the level of bubbles observed in the heart even in the absence of significantly elevated tissue inert gas saturations as would be predicted by usual decompression algorithms.
RECOMMENDATIONS
Based on this research, the following recommendations have been made:
The main conclusions of this research are threefold:
FOOTNOTE:
A unique form of decompression illness associated with breath-hold diving is discussed, including research and recommendations.
Decompression illness (DCI) is mainly associated with compressed gas diving or caisson work. However, since 1965, diving researchers have become increasingly aware of a curious cluster of neurological symptoms associated with breath-hold diving, but not attributed to hypoxia of ascent [1,2]. The condition, known as “taravana” amongst pearl divers of the Tuamotus (a chain of islands and atolls in French Polynesia), has increasingly become accepted as a unique form of DCI [3]. The typical presentation is a rapid onset of partial paralysis, visual problems, difficulties with hearing or speech [3], and even cases of loss of consciousness and death [4]. Although scans have confirmed that it is an injury to the brain [5,8], the underlying mechanism is not completely understood. For instance, it is not clear whether it is primarily the result of arterial gas embolism [9,10], or due to the formation of inert gas bubbles within the brain itself [4,11]. Either one or both of these mechanisms may be involved in developing taravana; conceivably, it might also be something much more complicated than the usual dichotomous understanding [12].
Bubble detection methods have been used quite widely to assess decompression stress. Similarly, they have been employed to predict the chances of developing decompression disorders following decompression. Of the various available methods, precordial Doppler and cardiac ultrasound are the best known. Doppler detections have confirmed the presence of bubbles in breath-hold divers [11]. However, Doppler bubblefindings have been somewhat at odds with the severity of symptoms that have been reported. Also, recent advances in ultrasound technology have made it more feasible to use cardiac ultrasound to better quantify the risk.
In 2013, the author of this article, together with a team of DAN Europe researchers, was able to show significant intracardiac bubbles following breath-hold diving using a two-dimensional cardiac ultrasound. Using conventional cardiac ultrasound methods and an established scoring method [13], significant bubbles were observed in a group of spearfishermen after performing repetitive breath-hold dives under laboratory conditions. Based on this discovery, the team decided to employ a well-recognised decompression algorithm to determine if it would be able to predict the accumulation of inert gas during breath-hold diving excursions associated with detectable bubbles. If so, and ifpost-diving bubbles could be predicted mathematically, this might suggest that the risks for developing taravana might be minimised by following the same principles used for safe decompression after compressed gas diving.
With this objective in mind, various repetitive breath-hold dive profiles were recorded for depth, dive time, bottom time, descent and ascent rates and gradient factors1 (GF), all calculated through the use of the Bühlmann ZH-16 Model C[13,14]. However, most of the profiles had very low GF,typically 33% or less of the maximum value. This approach seems unable to predict the appearance of inert gas bubblesfollowing breath-hold diving. Therefore, there is reason to suspect additional predisposing mechanisms. Something else must be involved that makes breath-hold divers uniquely vulnerable compared to the inert gas dynamics associated with compressed gas diving.
In evaluating various spearfishing divers, the physiology of breath-hold diving, and the specific practices associated with taravana, a new theory has emerged. It would seem that it may be due to the following factors, namely the pooling of blood in the lungs during the dive with an associated additional uptake of inert gas from the lungs to the blood. This would be followed by a rapid shift of blood upon returning to the surface that might explain the level of bubbles observed in the heart even in the absence of significantly elevated tissue inert gas saturations as would be predicted by usual decompression algorithms.
RECOMMENDATIONS
Based on this research, the following recommendations have been made:
- Breath-hold diving has become increasingly popular in recent years. Those involved in the sport push towards ever-increasing depths (particularly those who engage in either competitive breath-hold diving or spearfishing). As a result, the incidence of taravana is expected to increase, unless additional precautionary measures are introduced as normative practice.
- Even though the risk for developing taravana cannot be predicted using traditional decompression modelling, this does not mean that recommendations cannot be made. In as far back as 1965 a “surface recovery time” of at least three times the total breath-hold dive time wasrecommended by the United States Navy [15]. Therefore, in lieu of more specific advice, it is also recommended thatalthough the exact cause may be elusive to some extent,the manifestations of taravana are consistent with DCI. The same first aid and treatment measures are therefore recommended: 100% oxygen first aid and prompt referral for recompression for neurological symptoms following deep, repetitive breath-hold diving.
The main conclusions of this research are threefold:
- Significant intracardiac bubbling has been observed following repetitive breath-hold diving. This supports the idea of a bubble-related cause of taravana.
- Current decompression models are unsuitable for predicting breath-hold related bubbles and, consequently, the risk of developing taravana.
- It is noteworthy that the experimental dive profiles used for the study, which produced bubbling, are moreconservative than those used regularly in the open ocean. Until we find better predictors of taravana, we strongly recommend that all divers follow the empirical precautionary principle of spending at least three times the duration of their dive at the surface in order to recover.
FOOTNOTE:
- Gradient factors (GF) are an expression of inert gas supersaturation of theoretical tissues or compartments within the body during ascent and surfacing. They offer a mathematically manageable method of determining which of these theoretical compartments appear most vulnerable to bubble formation, for example, the leading tissues or compartments. During the original table development, and based on actual testing, maximum GFs were determined for each of the theoretical tissues which have been expressed as maximum values (or M-values) of inert gas saturation for the 16 “tissues” considered by the Bühlmann ZH-16 Model C.
- Cross, E.R. 1965. Physiology of Breath-Hold Diving and the Ama of Japan. In: Rahn H, Yokoyama T. (eds.). Taravana diving syndrome in the Tuamotu diver. Washington, DC: National Academy of Sciences Research Council.
- Paulev, P. 1965. Decompression sickness following repeated breath-hold dives. J Appl Physiol (1985), 20(5): 1028-31.
- Lemaitre, F., Fahlman, A., Gardette, B. & Kohshi, K. 2009. Decompression sickness in breath-hold divers: a review. J Sports Sci, 27(14):1519-1534.
- Moon, R.E. & Gray, L.L. 2010. Breath-hold diving and cerebral decompression illness. Undersea Hyperb Med, 37(1):1-5.
- Kohshi, K., Katoh, T., Abe, H. & Okudera, T. 2000. Neurological accidents caused by repetitive breath-hold dives: two case reports. J Neurol Sci, 178(1):66-69.
- Kohshi, K., Kinoshita, Y., Abe, H. & Okudera, T. 1998. Multiple cerebral infarction in Japanese breath-hold divers: two case reports. Mt Sinai J Med, 65(4):280-283.
- Kohshi, K., Wong, R.M., Abe, H., Katoh, T., Okudera, T. & Mano, Y. 2005. Neurological manifestations in Japanese Ama divers. Undersea Hyperb Med, 32(1):11-20.
- Kohshi, K., Wong, R.M., Higashi, T., Katoh, T. & Mano, Y. 2005. Acute decompression illness following hyperbaric exposure: clinical features of central nervous system involvement. J UOEH, 27(3): 249-261.
- Lindholm, P. & Lundgren, C.E. 2009. The physiology and pathophysiology of human breath-hold diving. J Appl Physiol (1985), 106(1):284-292.
- Liner, M.H. & Andersson, J.P. 2010. Suspected arterial gas embolism after glossopharyngeal insufflation in a breath-hold diver. Aviat Space Environ Med, 81(1):74-76.
- Prediletto, R., Fornai, E., Catapano, G., Carli, C., Garbella, E., Passera, M., Cialoni, D., Bedini, R. & L’Abbate, A. 2009. Time course of carbon monoxide transfer factor after breath-hold diving. Undersea Hyperb Med, 36(2):93-101.
- Thom, S.R., Bennett, M, & Banham, N.D., Chin, W., Blake, D.F., Rosen, A., Pollock, N.W., Madden, D., Barak, O., Marroni, A., Balestra, C., Germonpré,P., Pieri, M., Cialoni, D., Le, P.J., Logue, C., Lambert, D., Hardy, K.R., Sward, D., Yang, M. Bhopale, V.B. & Dujic, Z. 2015. Association of microparticles and neutrophil activation with decompression sickness. J Appl Physiol (1985), 119(5):427-434.
- Blogg, S.L., Gennser, M., Mollerlokken, A. & Brubakk, A.O. Ultrasound detection of vascular decompression bubbles: the influence of newtechnology and considerations on bubble load. Diving Hyperb Med 2014, 44(1):35-44.
- Germonpré, P., Papadopoulou, V., Hemelryck, W., Obied, G., Lafère, P., Eckersley, R.J. Tang, M.X. & Balestra, C. 2014. The use of portable 2D echocardiography and ‘frame-based’ bubble counting as a tool to evaluate diving decompression stress. Diving Hyperb Med, 44(1):5-13.
- Lanphier, E.H. 1965. Application of decompression tables to repeated breath-hold dives. Washington, DC: National Academy of Sciences, National Research Council.
Posted in Alert Diver Spring Editions
Tagged with Free diving, Freediver, Apnea, Decompression Illness, DCI, DCS
Tagged with Free diving, Freediver, Apnea, Decompression Illness, DCI, DCS
Categories
2020
January
February
Group Fitness at the PoolHow to Rescue a Distressed diver at the SurfaceHow to manage Near-DrowningNo Sit-ups no problem How to manage MalariaHow to manage Oxygen Deficiency (Hypoxia)What to do when confronted by a sharkHow to manage Scombroid PoisoningHow to perform a Deep Diver RescueHow to perform One-rescuer CPRHow to perform a Neurological Assessment
March
DAN’s Quick Guide to Properly Disinfecting Dive GearCOVID-19 : Prevention Recommendations for our Diving CommunityGermophobia? - Just give it a reasonable thoughtScuba Equipment care – Rinsing and cleaning diving equipmentCOVID-19 and DAN MembershipFurther limitations imposed on travels and considerations on diving activitiesDAN Membership COVID-19 FAQsLancet COVID-19 South African Testing SitesCOVID-19 No Panic Help GuideGetting Decompression Sickness while FreedivingDown in the DumpsCardiovascular Disease and DivingDelayed Off-GassingDiving after Dental surgeryDiving with Multiple MedicationsPygmy Seahorses: Life AquaticAfrica DustCOVID-19 Myth BustersScuba Units Are Not Suitable Substitutes for VentilatorsDisinfection of Scuba Equipment and COVID-19Physioball Stability Exercises
April
COVID-19 AdvisoryScuba Equipment Care - Drying & Storing Your GearTransporting Diving Lights & BatteriesHow to Pivot Your Message During a CrisisTourism Relief FundCOVID-19 Business Support ReviewDiving After COVID-19: What We Know TodayEUBS-ECHM Position Statement on Diving ActivitiesPart 2: COVID-19 Business Support ReviewPress Release
May
Diving in the Era of COVID-19Dive Operations and COVID-19: Prepping for ReturnCOVID-19 & Diving Activities: 10 Safety RecommendationsCOVID-19: Surface Survival TimesThe Philippines at its FinestThe Logistics of ExplorationThe Art of the Underwater SelfieShooter: Douglas SeifertFAQs Answered: Disinfecting Scuba EquipmentStock your First-Aid KitResearch and OutreachCovid-19 ResearchOut of the BlueEffects of Aspirin on DivingThe New Pointy end of DivingDiving and Hepatitis CCaissons, Compressed-Air work and Deep TunnellingPreparing to Dive in the New NormalNew Health Declaration Form Sample Addressing C-19 IssuesDiving After COVID 19: What Divers Need to Know
June
Travel Smarter: PRE-TRIP VACCINATIONSAttention-Deficit/Hyperactivity Disorder and DivingCOVID-19: Updated First Aid Training Recommendations From DANDiving with a Purpose in National Marine SanctuariesStay Positive Through the PandemicFor the Dive Operator: How to Protect Your Staff & ClientsStudying Deep reefs and Deep diversAsking the Right QuestionsLung squeeze under cold diving conditions
July
Dive DeprivationVolunteer Fish Surveys: Engage DiversDAN Member Profile: Mehgan Heaney-GrierTravel Smarter: Don’t Cancel, Reschedule InsteadDive Boat Fire SafetyRay of HopePartner ExercisesDiving at AltitudeAluminium ExposureHip FracturesAcoustic NeuromaGuidelines for Lifelong Medical Fitness to DiveNew Dive Medical Forms
August
Women in Diving: Lauren Arthur, Conservationist & Natural History Story TellerWomen in Diving: Dr Sara Andreotti White Shark ResearcherTiming ExerciseWomen in Diving: The Salty Wanderer, Charlie WarlandWomen in Diving: Beth Neale, Aqua soul of freedivingWomen in Diving: Diving and spearfishing Diva, Jean HattinghWomen in Diving: Zandile Ndhlovu, The Black Mermaid
September
October
Freediving For ScienceStep Exercises with CardioFluorescence Imaging help Identify Coral BleachingChildren and DivingThe Watchman device and divingScuba Diving and Factor V Leiden gene mutationNitrogen Narcosis at shallow depthsOil and Particulates: Safe levels in Breathing Air at depthDive Principles for Coping with COVID-19The Importance of a Predive Safety CheckTalya Davidoff: the 'Plattelandse Meisie' Freediver
2019
February
April
May
DAN Press ReleaseYour Dive Computer: Tips and tricks - PART 1Your Dive Computer: Tips and tricks - PART 2Aural HygieneDCS AheadHow Divers Can Help with coral conservationRed Tide and shellfish poisoningDiving after Kidney DonationDiving with hypertrophic cardiomyopathyEmergency Underwater Oxygen Recompression
June
July
September
October
November
Exercise drills with DowelsHeart-rate TrainingCultivating ConservationTRavel Smarter : Evaluating an unfamiliar Dive operatorChallenging the Frontiers of Decompression ResearchTravel Smarter: Plan for Medical EmergenciesWhen should I call my Doctor?DAN Student Medical Expense CoverageAdvice, Support and a LifelineWetsuits and heat stressDiving after Chiropractic adjustments
2018
April
Flying after pool diving FAQLung squeeze while freediving FAQDiving after Bariatric surgery FAQMarine injuries FAQVasovagal Syncope unpredictable FAQIncident report procedure FAQDiving after knee surgery FAQDiving when in RemissionDive with orbital Implant FAQInert gas washout FAQOxygen ears FAQPost Decompression sicknessChildren and diving. The real concerns.Diving after SurgeryPhysiology of Decompresssion sickness FAQDiving and regular exerciseGordon Hiles - I am an Underwater Cameraman and Film MakerScuba Air QualityBreath-hold diving. Part 3: The Science Bit!Compensation Legislation and the Recreational DiverCape Town DivingFive pro tips for capturing better images in cold waterThe Boat Left Without You: Now What?
May
When things go wrongEmergency Planning: Why Do We Need It?Breath-hold diving: Running on reserve -Part 5 Learning to RebreatheSweet Dreams: When Can I Resume Diving Post Anaesthesia?Investing in the future of reefsTo lie or not to lie?THE STORY OF A RASH AFTER A DIVEFirst Aid KitsTaravana: Fact or Falacy?
June
Oxygen Unit MaintenanceKnow Your Oxygen-Delivery Masks 1Know Your Oxygen-Delivery Masks 2Emergency Oxygen unitsInjuries due to exposure - HypothermiaInjuries due to exposure - Altitude sicknessInjuries due to Exposure - Dehydration and other concernsHow to plan for your dive tripThe Future of Dive MedicinePlastic is Killing our ocean
September
Return to DivingDiagnoses: Pulmonary blebSide effects of Rectogesic ointmentDiving with ChemotherapyReplacing dive computers and BCDsCustomize Your First-Aid KitPlan for medical emergenciesHow the dive Reflex protects the brain and heartDry suits and skin BendsAltitude sickness and DCSScuba Diving and Life Expectancy
2017
March
April
Incident Insight: TriageA Field Guide to Minor MishapsSnorkels: Pros & ConsTime & RecoveryMedication & Drug UseDiving with CancerNitrox FAQCOPD FAQHyperbaric Chamber FAQJet Lag FAQHydration FAQAnticoagulant Medication FAQFluid in the Ear FAQEye Surgery FAQElderly Divers FAQNitrogen FAQHealth Concerns FAQMotion Sickness FAQMicronuclei FAQ
June
August
2016
February
March
Breath-Hold Diving & ScubaReturn to Diving After DCITiming Exercise & DivingHot Tubs After DivingSubcutaneous EmphysemaIn-Water RecompressionDiving at AltitudeFlying After DivingDiving After FlyingThe Risks of Diabetes & DivingFlu-like Symptoms Following a DiveHand & Foot EdemaFrontal HeadachesBladder DiscomfortLatex AllergiesRemember to BreatheProper Position for Emergency CareAches & PainsCell Phones While DrivingSurfers Ear Ear Ventilation TubesDealing with Ear ProblemsDiving with Existing Ear InjuriesPerforated Ear DrumENT SurgeryUnpluggedCochlear ImplantsPortuguese Man-of-WarJellyfish StingsLionfish, Scorpionfish & Stonefish EnvenomationsStingray Envenomation Coral Cuts, Scrapes and RashesSpeeding & Driving Behaviour
June
Newsflash! Low Pressure Hose DeteriorationItching & rash go away & come back!7 Things we did not know about the oceanMigraine HeadacheAttention Deficit Disorder Cerebral Vascular AccidentEpilepsyCerebral PalsyHistory of SeizuresMultiple Sclerosis Head TraumaBreast Cancer & Fitness to Dive IssuesLocal Allergic ReactionsSea LiceHow ocean pollution affects humans Dive Fatality & Lobster Mini-Season StatisticsPregnancy & DivingReturn to Diving After Giving BirthBreast Implants & DivingMenstruation During Diving ActivitiesOral Birth ControlBreast FeedingPremenstrual SyndromeOsteoporosisThe Aftermath of Diving IncidentsCompensation Legislation & the Recreational DiverNoise-Induced Hearing LossLegal MattersThe Nature of Liability & DivingDAN Legal NetworkWaivers, Children & Solo DivingHealthy, but overweight!Taking Medication while Scuba DivingGetting Fit for the Dive SeasonBone Considerations in Young DiversAsthma and Scuba DivingHepatitisDiving with HyperglycemiaShoulder PainDiving After Spinal Back Surgery
August
Hazard Identification & Risk AssessmentCaring For Your People Caring For Your FacilitiesCaring For Your BusinessScuba Air Quality Part 1Scuba Air Quality Part 2Chamber Maintenance Part 1Chamber Maintenance Part 2The Aging Diver Propeller SafetyRelease The PressureDon't Get LostMore Water, Less Bubbles13 Ways to Run Out of Air & How Not To7 Mistakes Divers Make & How To Avoid ThemSafety Is In The AirHow Good Is Your Emergency Plan
2015
January
March