Scuba Air Quality Part 1

In this first of two parts, the rationale behind set contaminant limits for acceptable scuba air quality is explained.
Our knowledge-base on air quality for scuba diving has traditionally been driven by commercial and military diving practices. These empirically derived requirements were typically based on experience; either on what can realistically be achieved, or on accidents or the lack thereof.
Over the past 50 years or so, medical investigative work has been performed to determine the human impact of common contaminants in breathing air. In addition to this, occupational health and safety approaches, commonly referred to as Hazard Identification and Risk Assessment (HIRA), have been applied where other notable toxic or debilitating elements have found their way into breathing systems.
The first part of this two-part series offers some rationale behind the contaminant limits. In Part 2, a discussion will follow on how breathing air is analysed.
Our knowledge-base on air quality for scuba diving has traditionally been driven by commercial and military diving practices. These empirically derived requirements were typically based on experience; either on what can realistically be achieved, or on accidents or the lack thereof.
Over the past 50 years or so, medical investigative work has been performed to determine the human impact of common contaminants in breathing air. In addition to this, occupational health and safety approaches, commonly referred to as Hazard Identification and Risk Assessment (HIRA), have been applied where other notable toxic or debilitating elements have found their way into breathing systems.
The first part of this two-part series offers some rationale behind the contaminant limits. In Part 2, a discussion will follow on how breathing air is analysed.
What Are These Contaminants?
Contaminants can be divided into three levels that represent the likelihood of them occurring in a compressed-air cylinder intended for the diver, namely:
As a general rule, occupational health practices require that we analyse environmental conditions in the vicinity of where we are aware of potential hazards. Compressors used to produce breathing air require a thorough risk analysis prior to site selection of the compressors’ intake, with consideration of weather conditions, potential local toxic fumes and exhaust from buildings or internal combustion engines.
Lubricating oils for breathing air compressors are selected on the basis of their high temperature stability, inertness and acceptability for human exposure.
Finally, it remains an accepted fact that we do not monitor or analyse the air that we breathe unless we have reason to be concerned.
We therefore need to be pragmatic in our assessment of limits and, as a general rule, we know that exposure to contaminants in compressed air has mainly occurred due to a loss of controls, external influences and incidents, and where equipment has been neglected.
- Those most commonly found in compressed air (carbon dioxide [CO2], carbon monoxide [CO], moisture [H2O], condensed oil, particles and odour)
- Those found in certain geographic locations (volatile hydrocarbons and organic compounds such as methane [CH4])
- Relatively rare but reported toxic substances (for example vapours from cleaning products and halogenated solvents, emissions from motor vehicles, sulphur, and nitrogen-based products and fumes)
As a general rule, occupational health practices require that we analyse environmental conditions in the vicinity of where we are aware of potential hazards. Compressors used to produce breathing air require a thorough risk analysis prior to site selection of the compressors’ intake, with consideration of weather conditions, potential local toxic fumes and exhaust from buildings or internal combustion engines.
Lubricating oils for breathing air compressors are selected on the basis of their high temperature stability, inertness and acceptability for human exposure.
Finally, it remains an accepted fact that we do not monitor or analyse the air that we breathe unless we have reason to be concerned.
We therefore need to be pragmatic in our assessment of limits and, as a general rule, we know that exposure to contaminants in compressed air has mainly occurred due to a loss of controls, external influences and incidents, and where equipment has been neglected.
Safety Assessment
The following table indicates the primary safety concerns (namely human, fire and equipment safety) that apply to the contaminants we are concerned with.
Group 1: Contaminants always potentially present in compressed air
Compound: Carbon dioxide (CO2)
Sources: Ambient environment, internal combustion and cooking processes, human and animal respiration, microbial breakdown of organic matter, conversion of CO to CO2 in compressor filters, and motor vehicle exhaust systems.
Human safety: Elevated levels stimulate the respiratory centre, increasing rate of breathing. Increase in depth increases respiratory risk. Patients with high PaO2 are at greater risk of oxygen-induced seizures with elevated PaCO2. Elevated levels lead to minor perceptive changes, discomfort, dizziness or stupor and finally to unconsciousness and even death.
Fire safety: No concerns.
Equipment: No concerns.
Compound: Carbon monoxide (CO)
Sources: Ambient environment, internal combustion processes, furnaces, gas burners, cigarette smoke and overheated compressor oils.
Human safety: It decreases the carrying capacity of haemoglobin, resulting in a decreased amount of oxygen available to the tissues which leads to hypoxia. A highly toxic contaminant with environmental levels magnified by increased chamber pressure.
Fire safety: No concerns.
Equipment: No concerns.
Compound: Moisture (H20)
Sources: Ambient environment (humidity), drying processes (laundry), some combustion and other processes.
Human safety: Elevated levels of moisture are desirable (for comfort and reduced dehydration), whereas dry air inhibits growth of bacteria.
Fire safety: Very dry conditions enhance production of static electricity.
Equipment: Excessive moisture may cause regulators to freeze as adiabatic cooling takes place during pressure reduction. Regulators may fail to open causing downstream over-pressurisation of piping and equipment.
Excessive moisture enhances corrosion and oxidation (rust) of air storage vessels.
Excessive moisture causes filtration elements and chemicals to saturate, resulting in reduced filtration efficiency and effectiveness as well as elevated pressure drops. Excessive moisture can interact with some ultra-fine carbon filtration units generating strong chemical odours and resulting in nausea and respiratory irritation.
Compound: Oil (condensed)
Sources: Mostly compressor lubricating oil (introduced internally). Also from ambient evaporated oil from compressor oil leaks and surrounding equipment, motor vehicle exhaust fumes, pollens (introduced through the compressor intake), and even contaminated air pipes between the air processing plant and the chamber.
Human safety: Larger condensed particles are removed by the body’s clearance mechanisms; smaller particles are retained and may be hazardous depending on the type and the amount (symptoms include inflammation or even rupturing of alveoli).
Fire safety: There are significant fire concerns, irrespective of the type of
condensed oil.
Equipment: There is no concern at the levels usually controlled for. The maximum level of 5 mg/m³ equates to a dew point temperature of -64°C, or 6 ppmv, which is significantly lower than the lowest required levels for H20.
Compound: Particles
Sources: Ambient environment (micro-particles of dust and pollens); breakdown products in compressors, piping systems and filtration media; as well as post construction debris in pipes and controls.
Human safety: Particles smaller than 10 μm have the potential to cause shortness of breath, especially in patients with respiratory conditions (e.g. asthma and bronchitis), as well as a reduction in the ability to resist infection.
Fire safety: Large concentrations of particulates can serve as a source of ignitable fuel.
Equipment: Larger particles are known causes of failure in pressure regulators, which may cause valves not to seal when closed and may erode valve seats, discs and seals.
Compound: Odour
Sources: Ambient environment and cleaning compounds used on air
supply systems.
Human safety: It is generally only related to comfort levels. Odours from
volatile, toxic or otherwise harmful substances indicate
potential safety issues related to these contaminants.
Fire safety: There is no concern from odour. Contaminants with fire risks
(oils, volatile organic compounds [VOC], etc.) are discussed
under the relevant contaminant sections.
Equipment: No concerns.
Group 1: Contaminants always potentially present in compressed air
Compound: Carbon dioxide (CO2)
Sources: Ambient environment, internal combustion and cooking processes, human and animal respiration, microbial breakdown of organic matter, conversion of CO to CO2 in compressor filters, and motor vehicle exhaust systems.
Human safety: Elevated levels stimulate the respiratory centre, increasing rate of breathing. Increase in depth increases respiratory risk. Patients with high PaO2 are at greater risk of oxygen-induced seizures with elevated PaCO2. Elevated levels lead to minor perceptive changes, discomfort, dizziness or stupor and finally to unconsciousness and even death.
Fire safety: No concerns.
Equipment: No concerns.
Compound: Carbon monoxide (CO)
Sources: Ambient environment, internal combustion processes, furnaces, gas burners, cigarette smoke and overheated compressor oils.
Human safety: It decreases the carrying capacity of haemoglobin, resulting in a decreased amount of oxygen available to the tissues which leads to hypoxia. A highly toxic contaminant with environmental levels magnified by increased chamber pressure.
Fire safety: No concerns.
Equipment: No concerns.
Compound: Moisture (H20)
Sources: Ambient environment (humidity), drying processes (laundry), some combustion and other processes.
Human safety: Elevated levels of moisture are desirable (for comfort and reduced dehydration), whereas dry air inhibits growth of bacteria.
Fire safety: Very dry conditions enhance production of static electricity.
Equipment: Excessive moisture may cause regulators to freeze as adiabatic cooling takes place during pressure reduction. Regulators may fail to open causing downstream over-pressurisation of piping and equipment.
Excessive moisture enhances corrosion and oxidation (rust) of air storage vessels.
Excessive moisture causes filtration elements and chemicals to saturate, resulting in reduced filtration efficiency and effectiveness as well as elevated pressure drops. Excessive moisture can interact with some ultra-fine carbon filtration units generating strong chemical odours and resulting in nausea and respiratory irritation.
Compound: Oil (condensed)
Sources: Mostly compressor lubricating oil (introduced internally). Also from ambient evaporated oil from compressor oil leaks and surrounding equipment, motor vehicle exhaust fumes, pollens (introduced through the compressor intake), and even contaminated air pipes between the air processing plant and the chamber.
Human safety: Larger condensed particles are removed by the body’s clearance mechanisms; smaller particles are retained and may be hazardous depending on the type and the amount (symptoms include inflammation or even rupturing of alveoli).
Fire safety: There are significant fire concerns, irrespective of the type of
condensed oil.
Equipment: There is no concern at the levels usually controlled for. The maximum level of 5 mg/m³ equates to a dew point temperature of -64°C, or 6 ppmv, which is significantly lower than the lowest required levels for H20.
Compound: Particles
Sources: Ambient environment (micro-particles of dust and pollens); breakdown products in compressors, piping systems and filtration media; as well as post construction debris in pipes and controls.
Human safety: Particles smaller than 10 μm have the potential to cause shortness of breath, especially in patients with respiratory conditions (e.g. asthma and bronchitis), as well as a reduction in the ability to resist infection.
Fire safety: Large concentrations of particulates can serve as a source of ignitable fuel.
Equipment: Larger particles are known causes of failure in pressure regulators, which may cause valves not to seal when closed and may erode valve seats, discs and seals.
Compound: Odour
Sources: Ambient environment and cleaning compounds used on air
supply systems.
Human safety: It is generally only related to comfort levels. Odours from
volatile, toxic or otherwise harmful substances indicate
potential safety issues related to these contaminants.
Fire safety: There is no concern from odour. Contaminants with fire risks
(oils, volatile organic compounds [VOC], etc.) are discussed
under the relevant contaminant sections.
Equipment: No concerns.
Group 2: Contaminants present in specific areas
This group may be significantly larger than discussed here, but the following analysis serves to indicate where potential hazards may exist for clinical hyperbaric facilities. Volatile hydrocarbons include organic compounds. However, methane is the most commonly occurring compound of these compounds and is separated from the analysis. Some standards require that all hydrocarbons be grouped as a total hydrocarbon (THC) limit. This does not allow for easy identification of potential sources.
Contaminant: Volatile hydrocarbons and VOC
They include, but are not limited to, toluene, xylene, benzene, ethane, styrene and acetone.
Sources: Ambient environment as a result of exposure to building materials, plastic materials, industrial chemicals, cleaning compounds, adhesives, furniture, flooring, heating and combustion processes. Overheating compressors are reported as a potential source.
Human safety: Generally hazardous in terms of carcinogens, neurological and narcotic effects, organ damage as well as general distress. Initial symptoms include fatigue, headaches, confusion, numbness, cardiac irritation and depression.
Fire safety: There are significant fire concerns in terms of low ignition temperature and low flashpoint fuels.
Equipment: There is no significant concern at the expected levels.
Compound: Methane (CH4)
Sources: Ambient environment, especially in certain geological areas and near decaying or fermenting organic matter, landfills or domestic animals (cattle). CH4 may permeate buildings and enter the compressor intake.
Human safety: It is not toxic (may be an asphyxiant where oxygen is reduced to below 16%).
Fire safety: There are significant fire concerns with CH4 because it is a highly flammable fuel.
Equipment: No concerns.
This group may be significantly larger than discussed here, but the following analysis serves to indicate where potential hazards may exist for clinical hyperbaric facilities. Volatile hydrocarbons include organic compounds. However, methane is the most commonly occurring compound of these compounds and is separated from the analysis. Some standards require that all hydrocarbons be grouped as a total hydrocarbon (THC) limit. This does not allow for easy identification of potential sources.
Contaminant: Volatile hydrocarbons and VOC
They include, but are not limited to, toluene, xylene, benzene, ethane, styrene and acetone.
Sources: Ambient environment as a result of exposure to building materials, plastic materials, industrial chemicals, cleaning compounds, adhesives, furniture, flooring, heating and combustion processes. Overheating compressors are reported as a potential source.
Human safety: Generally hazardous in terms of carcinogens, neurological and narcotic effects, organ damage as well as general distress. Initial symptoms include fatigue, headaches, confusion, numbness, cardiac irritation and depression.
Fire safety: There are significant fire concerns in terms of low ignition temperature and low flashpoint fuels.
Equipment: There is no significant concern at the expected levels.
Compound: Methane (CH4)
Sources: Ambient environment, especially in certain geological areas and near decaying or fermenting organic matter, landfills or domestic animals (cattle). CH4 may permeate buildings and enter the compressor intake.
Human safety: It is not toxic (may be an asphyxiant where oxygen is reduced to below 16%).
Fire safety: There are significant fire concerns with CH4 because it is a highly flammable fuel.
Equipment: No concerns.
Group 3: Rare but reported contaminants
This group is too diverse and extensive to discuss in a similar fashion to the previous two groups.
Typical contaminants include vapours from cleaning products or solvents that are not covered under Group 2 as well as environmental compounds including hydrogen sulphide (H2S), SO2, NO, N2O, NO2, NOx fumes, ozone, lead compounds, asbestos and many others.
Each of these has specific deleterious effects on humans, but there are neither significant fire issues nor equipment issues – at least not in the concentrations expected in the air.
Nitrogen oxide products, loosely referred to as NOx, are associated with decreased lung function, increased severity of respiratory problems, chronic inflammation and irreversible structural changes, amongst other related respiratory conditions and complications.
Most occupational health and safety regulations for any public enterprise provide regulations, limits and guidelines for identification and exclusion. In terms of this article, we will exclude several of these from the requirements for acceptable air quality for scuba diving and accept that they will be controlled by occupation HIRA practices.
This group is too diverse and extensive to discuss in a similar fashion to the previous two groups.
Typical contaminants include vapours from cleaning products or solvents that are not covered under Group 2 as well as environmental compounds including hydrogen sulphide (H2S), SO2, NO, N2O, NO2, NOx fumes, ozone, lead compounds, asbestos and many others.
Each of these has specific deleterious effects on humans, but there are neither significant fire issues nor equipment issues – at least not in the concentrations expected in the air.
Nitrogen oxide products, loosely referred to as NOx, are associated with decreased lung function, increased severity of respiratory problems, chronic inflammation and irreversible structural changes, amongst other related respiratory conditions and complications.
Most occupational health and safety regulations for any public enterprise provide regulations, limits and guidelines for identification and exclusion. In terms of this article, we will exclude several of these from the requirements for acceptable air quality for scuba diving and accept that they will be controlled by occupation HIRA practices.
What Are Safe Limits?
The limits depicted in the table below are based on the effect on the human physiology, the fire risks and the risks to equipment.
All human exposure limits are expressed as the surface equivalent value (SEV) and for the purposes of air diving a maximum depth of 50 metres of seawater (MSW) is assumed. Limits tabulated are generally stated as the “noeffect level” which is the dose with no known toxic or debilitating effects.
All human exposure limits are expressed as the surface equivalent value (SEV) and for the purposes of air diving a maximum depth of 50 metres of seawater (MSW) is assumed. Limits tabulated are generally stated as the “noeffect level” which is the dose with no known toxic or debilitating effects.
Finally, a Note On South African Regulations
Traditionally, our local regulations were contained in a standard known as SABS 019, the code of practice for transportable compressed gas containers. This regulation contained a table listing limits for impurities in compressed air for breathing. However, the latest revision of this standard no longer contains this table and instead we are referred to SABS 532 (issued in 2009 as SANS 532) which is the standard for industrial, medical, propellant, food and beverage gases, refrigerants and breathing gases.
We have lost some of the required guidance in this process and DAN-SA, together with the Compressed Gas Association of South Africa, has requested the SABS to provide an update to SABS 532 to include limits for the common contaminants of concern to scuba divers. We have hopefully provided practical, achievable and realistic limits for their consideration.
We have lost some of the required guidance in this process and DAN-SA, together with the Compressed Gas Association of South Africa, has requested the SABS to provide an update to SABS 532 to include limits for the common contaminants of concern to scuba divers. We have hopefully provided practical, achievable and realistic limits for their consideration.
Categories
2020
January
February
Group Fitness at the PoolHow to Rescue a Distressed diver at the SurfaceHow to manage Near-DrowningNo Sit-ups no problem How to manage MalariaHow to manage Oxygen Deficiency (Hypoxia)What to do when confronted by a sharkHow to manage Scombroid PoisoningHow to perform a Deep Diver RescueHow to perform One-rescuer CPRHow to perform a Neurological Assessment
March
DAN’s Quick Guide to Properly Disinfecting Dive GearCOVID-19 : Prevention Recommendations for our Diving CommunityGermophobia? - Just give it a reasonable thoughtScuba Equipment care – Rinsing and cleaning diving equipmentCOVID-19 and DAN MembershipFurther limitations imposed on travels and considerations on diving activitiesDAN Membership COVID-19 FAQsLancet COVID-19 South African Testing SitesCOVID-19 No Panic Help GuideGetting Decompression Sickness while FreedivingDown in the DumpsCardiovascular Disease and DivingDelayed Off-GassingDiving after Dental surgeryDiving with Multiple MedicationsPygmy Seahorses: Life AquaticAfrica DustCOVID-19 Myth BustersScuba Units Are Not Suitable Substitutes for VentilatorsDisinfection of Scuba Equipment and COVID-19Physioball Stability Exercises
April
COVID-19 AdvisoryScuba Equipment Care - Drying & Storing Your GearTransporting Diving Lights & BatteriesHow to Pivot Your Message During a CrisisTourism Relief FundCOVID-19 Business Support ReviewDiving After COVID-19: What We Know TodayEUBS-ECHM Position Statement on Diving ActivitiesPart 2: COVID-19 Business Support ReviewPress Release
May
Diving in the Era of COVID-19Dive Operations and COVID-19: Prepping for ReturnCOVID-19 & Diving Activities: 10 Safety RecommendationsCOVID-19: Surface Survival TimesThe Philippines at its FinestThe Logistics of ExplorationThe Art of the Underwater SelfieShooter: Douglas SeifertFAQs Answered: Disinfecting Scuba EquipmentStock your First-Aid KitResearch and OutreachCovid-19 ResearchOut of the BlueEffects of Aspirin on DivingThe New Pointy end of DivingDiving and Hepatitis CCaissons, Compressed-Air work and Deep TunnellingPreparing to Dive in the New NormalNew Health Declaration Form Sample Addressing C-19 IssuesDiving After COVID 19: What Divers Need to Know
June
Travel Smarter: PRE-TRIP VACCINATIONSAttention-Deficit/Hyperactivity Disorder and DivingCOVID-19: Updated First Aid Training Recommendations From DANDiving with a Purpose in National Marine SanctuariesStay Positive Through the PandemicFor the Dive Operator: How to Protect Your Staff & ClientsStudying Deep reefs and Deep diversAsking the Right QuestionsLung squeeze under cold diving conditions
July
Dive DeprivationVolunteer Fish Surveys: Engage DiversDAN Member Profile: Mehgan Heaney-GrierTravel Smarter: Don’t Cancel, Reschedule InsteadDive Boat Fire SafetyRay of HopePartner ExercisesDiving at AltitudeAluminium ExposureHip FracturesAcoustic NeuromaGuidelines for Lifelong Medical Fitness to DiveNew Dive Medical Forms
August
Women in Diving: Lauren Arthur, Conservationist & Natural History Story TellerWomen in Diving: Dr Sara Andreotti White Shark ResearcherTiming ExerciseWomen in Diving: The Salty Wanderer, Charlie WarlandWomen in Diving: Beth Neale, Aqua soul of freedivingWomen in Diving: Diving and spearfishing Diva, Jean HattinghWomen in Diving: Zandile Ndhlovu, The Black Mermaid
September
October
Freediving For ScienceStep Exercises with CardioFluorescence Imaging help Identify Coral BleachingChildren and DivingThe Watchman device and divingScuba Diving and Factor V Leiden gene mutationNitrogen Narcosis at shallow depthsOil and Particulates: Safe levels in Breathing Air at depthDive Principles for Coping with COVID-19The Importance of a Predive Safety CheckTalya Davidoff: the 'Plattelandse Meisie' Freediver
2019
February
April
May
DAN Press ReleaseYour Dive Computer: Tips and tricks - PART 1Your Dive Computer: Tips and tricks - PART 2Aural HygieneDCS AheadHow Divers Can Help with coral conservationRed Tide and shellfish poisoningDiving after Kidney DonationDiving with hypertrophic cardiomyopathyEmergency Underwater Oxygen Recompression
June
July
September
October
November
Exercise drills with DowelsHeart-rate TrainingCultivating ConservationTRavel Smarter : Evaluating an unfamiliar Dive operatorChallenging the Frontiers of Decompression ResearchTravel Smarter: Plan for Medical EmergenciesWhen should I call my Doctor?DAN Student Medical Expense CoverageAdvice, Support and a LifelineWetsuits and heat stressDiving after Chiropractic adjustments
2018
April
Flying after pool diving FAQLung squeeze while freediving FAQDiving after Bariatric surgery FAQMarine injuries FAQVasovagal Syncope unpredictable FAQIncident report procedure FAQDiving after knee surgery FAQDiving when in RemissionDive with orbital Implant FAQInert gas washout FAQOxygen ears FAQPost Decompression sicknessChildren and diving. The real concerns.Diving after SurgeryPhysiology of Decompresssion sickness FAQDiving and regular exerciseGordon Hiles - I am an Underwater Cameraman and Film MakerScuba Air QualityBreath-hold diving. Part 3: The Science Bit!Compensation Legislation and the Recreational DiverCape Town DivingFive pro tips for capturing better images in cold waterThe Boat Left Without You: Now What?
May
When things go wrongEmergency Planning: Why Do We Need It?Breath-hold diving: Running on reserve -Part 5 Learning to RebreatheSweet Dreams: When Can I Resume Diving Post Anaesthesia?Investing in the future of reefsTo lie or not to lie?THE STORY OF A RASH AFTER A DIVEFirst Aid KitsTaravana: Fact or Falacy?
June
Oxygen Unit MaintenanceKnow Your Oxygen-Delivery Masks 1Know Your Oxygen-Delivery Masks 2Emergency Oxygen unitsInjuries due to exposure - HypothermiaInjuries due to exposure - Altitude sicknessInjuries due to Exposure - Dehydration and other concernsHow to plan for your dive tripThe Future of Dive MedicinePlastic is Killing our ocean
September
Return to DivingDiagnoses: Pulmonary blebSide effects of Rectogesic ointmentDiving with ChemotherapyReplacing dive computers and BCDsCustomize Your First-Aid KitPlan for medical emergenciesHow the dive Reflex protects the brain and heartDry suits and skin BendsAltitude sickness and DCSScuba Diving and Life Expectancy
2017
March
April
Incident Insight: TriageA Field Guide to Minor MishapsSnorkels: Pros & ConsTime & RecoveryMedication & Drug UseDiving with CancerNitrox FAQCOPD FAQHyperbaric Chamber FAQJet Lag FAQHydration FAQAnticoagulant Medication FAQFluid in the Ear FAQEye Surgery FAQElderly Divers FAQNitrogen FAQHealth Concerns FAQMotion Sickness FAQMicronuclei FAQ
June
August
2016
February
March
Breath-Hold Diving & ScubaReturn to Diving After DCITiming Exercise & DivingHot Tubs After DivingSubcutaneous EmphysemaIn-Water RecompressionDiving at AltitudeFlying After DivingDiving After FlyingThe Risks of Diabetes & DivingFlu-like Symptoms Following a DiveHand & Foot EdemaFrontal HeadachesBladder DiscomfortLatex AllergiesRemember to BreatheProper Position for Emergency CareAches & PainsCell Phones While DrivingSurfers Ear Ear Ventilation TubesDealing with Ear ProblemsDiving with Existing Ear InjuriesPerforated Ear DrumENT SurgeryUnpluggedCochlear ImplantsPortuguese Man-of-WarJellyfish StingsLionfish, Scorpionfish & Stonefish EnvenomationsStingray Envenomation Coral Cuts, Scrapes and RashesSpeeding & Driving Behaviour
June
Newsflash! Low Pressure Hose DeteriorationItching & rash go away & come back!7 Things we did not know about the oceanMigraine HeadacheAttention Deficit Disorder Cerebral Vascular AccidentEpilepsyCerebral PalsyHistory of SeizuresMultiple Sclerosis Head TraumaBreast Cancer & Fitness to Dive IssuesLocal Allergic ReactionsSea LiceHow ocean pollution affects humans Dive Fatality & Lobster Mini-Season StatisticsPregnancy & DivingReturn to Diving After Giving BirthBreast Implants & DivingMenstruation During Diving ActivitiesOral Birth ControlBreast FeedingPremenstrual SyndromeOsteoporosisThe Aftermath of Diving IncidentsCompensation Legislation & the Recreational DiverNoise-Induced Hearing LossLegal MattersThe Nature of Liability & DivingDAN Legal NetworkWaivers, Children & Solo DivingHealthy, but overweight!Taking Medication while Scuba DivingGetting Fit for the Dive SeasonBone Considerations in Young DiversAsthma and Scuba DivingHepatitisDiving with HyperglycemiaShoulder PainDiving After Spinal Back Surgery
August
Hazard Identification & Risk AssessmentCaring For Your People Caring For Your FacilitiesCaring For Your BusinessScuba Air Quality Part 1Scuba Air Quality Part 2Chamber Maintenance Part 1Chamber Maintenance Part 2The Aging Diver Propeller SafetyRelease The PressureDon't Get LostMore Water, Less Bubbles13 Ways to Run Out of Air & How Not To7 Mistakes Divers Make & How To Avoid ThemSafety Is In The AirHow Good Is Your Emergency Plan
2015
January
March
2 Comments
A very interesting article.
Has there been any instances of such contaminants being linked directly to lung or throat cancer?
There are a number of reports of this type of cancer occurring within the wider dive community and was interested in establishing from DAN, has any research available on this issue, including the affect of continuous diving on enriched air (Nitrox).
Thank you for your comments on the article.
With reference to your question regarding any link between contaminants in breathing air and cancer, no, DAN itself has not done any research on this. The primary reason is due to the fact that we have observed no epidemiological correlation with this (the study of diseases), nor has the question arisen as such.
Some of the members of our DMO team are in fact directly involved in commercial diving. Here, divers are exposed to many years of breathing compressed air â not all of it anywhere near the quality of the air that the typical scuba diver breathes. We have consulted with one of them, and he reported that this potential health issue has never been tabled at DMAC (the Diving Medical Advisory Committee). This committee has access to reports on almost every type of long-term disease that a commercial diver might contract as a result of their working environment.
Thus, our medical director does not think that there is any evidence for this at the moment. This from a cursory look and basic literature survey on the International Agency for Research on Cancer(IRAC) site. He has been an active international consultant on all sorts of diving diseases for many years. If anyone might know, he would.
It would be possible to do a more in depth, formal investigation, but at this stage, one can assume that there is no reported link or research activity either concluded or published.
I hope that this answers your questions.