Remember to Breathe

In basic open-water classes, divers are told "never to hold their breath" for fear of lung injuries due to the expansion of compressed gas during ascent. Further, students are told that the most dangerous part of the ascent is closest to the surface.
Why is this? What is the actual mechanism by which lungs are injured by expanding gas? Do they actually rip and tear? Since the lungs are surrounded by a fluid-filled sac, where does the expansion occur? Is there empty space between the lungs, the sac, and the rest of the body? Finally, why exactly would the last bit of the ascent be more dangerous, say, than covering the same vertical distance much deeper? Doesn't the ambient pressure change as much between 60 and 30 feet as it does between 30 feet and the surface?
Why is this? What is the actual mechanism by which lungs are injured by expanding gas? Do they actually rip and tear? Since the lungs are surrounded by a fluid-filled sac, where does the expansion occur? Is there empty space between the lungs, the sac, and the rest of the body? Finally, why exactly would the last bit of the ascent be more dangerous, say, than covering the same vertical distance much deeper? Doesn't the ambient pressure change as much between 60 and 30 feet as it does between 30 feet and the surface?
Lung expansion injuries can be the most dramatic and life-threatening emergencies in scuba diving. They are generally a result of lung overinflation due to pathological air trapping (lung disease), or breathholding during ascent. A good understanding of lung anatomy is essential to comprehending the associated risks. The main bronchi divide into smaller airways called bronchioles and continue to branch and reduce in size until they form the respiratory bronchioles, which terminate in the alveolar sacs.
The alveoli are the key functional unit of the respiratory system where gas exchange takes place. These fragile air sacs are surrounded by a delicate membrane only one- to two-cell layers thick and are encompassed by a network of tiny blood capillaries. Exposed to atmospheric pressures at sea level, our lungs are in a state of equilibrium as we inhale and exhale.
Slight ambient pressure changes occur every day in the atmosphere on account of weather or when we ascend and descend within the atmosphere (e.g., with climbing or flying). These changes quite small, however, and are adjusted quite inconspicuously with each breath we take. As such, we are typically unaware of them when when we are in an atmospheric air environment. The same is not true when we dive in water, however: For some perspective: The full range of pressure change experienced when flying to a cabin altitude of 8000 feet in a commercial airline is experienced during a descent to merely 2 meters of depth. This presents two major problems to our lungs in terms of pressure-volume changes: (1) It possible to get a lung squeeze is we were to dive very deep on breath-hold; and (2) conversely, we can sustain a lung over-pressure injury if we do not exhale adequately (i.e., breathe regularly) during ascent while / after breathing from a compressed gas source under-water (e.g., SCUBA). Fortunately, scuba regulators deliver breathing gas at the ambient pressure to a diver - with every breath they take. Therefore, as long as a diver does not hold their breath, the adjustments avoid a lung-over pressure injury unless the ascent is very, very rapid. If they don't, there are various potential consequences:
This forces gas into one of three locations:
Probably gas enters blood vessels at "corners" of the lung - for example, between the lung and the mediastinum, where pressure differentials may cause disruption (tearing), allowing extra alveolar gas to enter. It is important to note that a breathhold ascent from a depth as shallow as four feet of sea water(fsw)/1.2 meters (msw) may be sufficient to tear alveoli sacs, causing lung tear and one of these three ailments.
For a fixed quantity of gas, the relationship between its volume and the external pressure is provided by Boyle's law. In essence, British physicist/chemist Robert Boyle discovered that at a constant temperature and mass, the volume of a gas is inversely proportional to the pressure exerted on that gas. When the pressure is doubled, the volume is reduced to one-half of the original volume. Conversely, when the pressure is reduced by one-half, the volume doubles. For a diver at 15 fsw/4.6 msw, the total pressure acting on his body is 1.5 atmospheres (one atmosphere at the surface, plus an additional 0.5 atmospheres exerted by the water column). A sudden ascent to the surface would therefore result in a 30 percent pressure reduction, and assuming a compliant chest wall, a volume increase of 50 percent. Lung injury may result.
Actual volume changes may be less than this because of the effect of the surrounding chest wall to provide some rigidity and protection for the lung. However, if the same vertical change occurred from a depth of 66 fsw/20 msw, the 0.5 atmosphere of depth change would only result in a 16 percent reduction in pressure and a 20 percent increase in lung volume, and would be less likely to cause lung injury. Boyle's law thus explains why abrupt changes in depth while in shallow water can be far more hazardous than equivalent changes of depth in deep water.
The alveoli are the key functional unit of the respiratory system where gas exchange takes place. These fragile air sacs are surrounded by a delicate membrane only one- to two-cell layers thick and are encompassed by a network of tiny blood capillaries. Exposed to atmospheric pressures at sea level, our lungs are in a state of equilibrium as we inhale and exhale.
Slight ambient pressure changes occur every day in the atmosphere on account of weather or when we ascend and descend within the atmosphere (e.g., with climbing or flying). These changes quite small, however, and are adjusted quite inconspicuously with each breath we take. As such, we are typically unaware of them when when we are in an atmospheric air environment. The same is not true when we dive in water, however: For some perspective: The full range of pressure change experienced when flying to a cabin altitude of 8000 feet in a commercial airline is experienced during a descent to merely 2 meters of depth. This presents two major problems to our lungs in terms of pressure-volume changes: (1) It possible to get a lung squeeze is we were to dive very deep on breath-hold; and (2) conversely, we can sustain a lung over-pressure injury if we do not exhale adequately (i.e., breathe regularly) during ascent while / after breathing from a compressed gas source under-water (e.g., SCUBA). Fortunately, scuba regulators deliver breathing gas at the ambient pressure to a diver - with every breath they take. Therefore, as long as a diver does not hold their breath, the adjustments avoid a lung-over pressure injury unless the ascent is very, very rapid. If they don't, there are various potential consequences:
This forces gas into one of three locations:
- the space within the chest cavity (pleural space), a condition known as pneumothorax;
- the tissue planes within the lung itself (interstitial space), from where it may travel into the space around the heart, the tissues of the neck and the larynx (mediastinal emphysema); or
- the blood.
Probably gas enters blood vessels at "corners" of the lung - for example, between the lung and the mediastinum, where pressure differentials may cause disruption (tearing), allowing extra alveolar gas to enter. It is important to note that a breathhold ascent from a depth as shallow as four feet of sea water(fsw)/1.2 meters (msw) may be sufficient to tear alveoli sacs, causing lung tear and one of these three ailments.
For a fixed quantity of gas, the relationship between its volume and the external pressure is provided by Boyle's law. In essence, British physicist/chemist Robert Boyle discovered that at a constant temperature and mass, the volume of a gas is inversely proportional to the pressure exerted on that gas. When the pressure is doubled, the volume is reduced to one-half of the original volume. Conversely, when the pressure is reduced by one-half, the volume doubles. For a diver at 15 fsw/4.6 msw, the total pressure acting on his body is 1.5 atmospheres (one atmosphere at the surface, plus an additional 0.5 atmospheres exerted by the water column). A sudden ascent to the surface would therefore result in a 30 percent pressure reduction, and assuming a compliant chest wall, a volume increase of 50 percent. Lung injury may result.
Actual volume changes may be less than this because of the effect of the surrounding chest wall to provide some rigidity and protection for the lung. However, if the same vertical change occurred from a depth of 66 fsw/20 msw, the 0.5 atmosphere of depth change would only result in a 16 percent reduction in pressure and a 20 percent increase in lung volume, and would be less likely to cause lung injury. Boyle's law thus explains why abrupt changes in depth while in shallow water can be far more hazardous than equivalent changes of depth in deep water.
Posted in Dive Safety FAQ
Categories
2021
March
Old Habits Die HardSave a Diver, Save YourselfCylinder SafetyUndercover CrabsReef safe sunscreenPhysics, Biophysics and Decompression SicknessModels and Marine LifeSunscreen and CoralCristina Mittermeier: Commitment to ConservationDiving After a StrokeCurrent DivesThis Bites: Prevention TreatmentEnvironmental Considerations for Disinfection
2020
January
February
Group Fitness at the PoolHow to Rescue a Distressed diver at the SurfaceHow to manage Near-DrowningNo Sit-ups no problem How to manage MalariaHow to manage Oxygen Deficiency (Hypoxia)What to do when confronted by a sharkHow to manage Scombroid PoisoningHow to perform a Deep Diver RescueHow to perform One-rescuer CPRHow to perform a Neurological Assessment
March
DAN’s Quick Guide to Properly Disinfecting Dive GearCOVID-19 : Prevention Recommendations for our Diving CommunityGermophobia? - Just give it a reasonable thoughtScuba Equipment care – Rinsing and cleaning diving equipmentCOVID-19 and DAN MembershipFurther limitations imposed on travels and considerations on diving activitiesDAN Membership COVID-19 FAQsLancet COVID-19 South African Testing SitesCOVID-19 No Panic Help GuideGetting Decompression Sickness while FreedivingDown in the DumpsCardiovascular Disease and DivingDelayed Off-GassingDiving after Dental surgeryDiving with Multiple MedicationsPygmy Seahorses: Life AquaticAfrica DustCOVID-19 Myth BustersScuba Units Are Not Suitable Substitutes for VentilatorsDisinfection of Scuba Equipment and COVID-19Physioball Stability Exercises
April
COVID-19 AdvisoryScuba Equipment Care - Drying & Storing Your GearTransporting Diving Lights & BatteriesHow to Pivot Your Message During a CrisisTourism Relief FundCOVID-19 Business Support ReviewDiving After COVID-19: What We Know TodayEUBS-ECHM Position Statement on Diving ActivitiesPart 2: COVID-19 Business Support ReviewPress Release
May
Diving in the Era of COVID-19Dive Operations and COVID-19: Prepping for ReturnCOVID-19 & Diving Activities: 10 Safety RecommendationsCOVID-19: Surface Survival TimesThe Philippines at its FinestThe Logistics of ExplorationThe Art of the Underwater SelfieShooter: Douglas SeifertFAQs Answered: Disinfecting Scuba EquipmentStock your First-Aid KitResearch and OutreachCovid-19 ResearchOut of the BlueEffects of Aspirin on DivingThe New Pointy end of DivingDiving and Hepatitis CCaissons, Compressed-Air work and Deep TunnellingPreparing to Dive in the New NormalNew Health Declaration Form Sample Addressing C-19 IssuesDiving After COVID 19: What Divers Need to Know
June
Travel Smarter: PRE-TRIP VACCINATIONSAttention-Deficit/Hyperactivity Disorder and DivingCOVID-19: Updated First Aid Training Recommendations From DANDiving with a Purpose in National Marine SanctuariesStay Positive Through the PandemicFor the Dive Operator: How to Protect Your Staff & ClientsStudying Deep reefs and Deep diversAsking the Right QuestionsLung squeeze under cold diving conditions
July
Dive DeprivationVolunteer Fish Surveys: Engage DiversDAN Member Profile: Mehgan Heaney-GrierTravel Smarter: Don’t Cancel, Reschedule InsteadDive Boat Fire SafetyRay of HopePartner ExercisesDiving at AltitudeAluminium ExposureHip FracturesAcoustic NeuromaGuidelines for Lifelong Medical Fitness to DiveNew Dive Medical Forms
August
Women in Diving: Lauren Arthur, Conservationist & Natural History Story TellerWomen in Diving: Dr Sara Andreotti White Shark ResearcherTiming ExerciseWomen in Diving: The Salty Wanderer, Charlie WarlandWomen in Diving: Beth Neale, Aqua soul of freedivingWomen in Diving: Diving and spearfishing Diva, Jean HattinghWomen in Diving: Zandile Ndhlovu, The Black Mermaid
September
October
Freediving For ScienceStep Exercises with CardioFluorescence Imaging help Identify Coral BleachingChildren and DivingThe Watchman device and divingScuba Diving and Factor V Leiden gene mutationNitrogen Narcosis at shallow depthsOil and Particulates: Safe levels in Breathing Air at depthDive Principles for Coping with COVID-19The Importance of a Predive Safety CheckTalya Davidoff: the 'Plattelandse Meisie' Freediver
2019
February
April
May
DAN Press ReleaseYour Dive Computer: Tips and tricks - PART 1Your Dive Computer: Tips and tricks - PART 2Aural HygieneDCS AheadHow Divers Can Help with coral conservationRed Tide and shellfish poisoningDiving after Kidney DonationDiving with hypertrophic cardiomyopathyEmergency Underwater Oxygen Recompression
June
July
September
October
November
Exercise drills with DowelsHeart-rate TrainingCultivating ConservationTRavel Smarter : Evaluating an unfamiliar Dive operatorChallenging the Frontiers of Decompression ResearchTravel Smarter: Plan for Medical EmergenciesWhen should I call my Doctor?DAN Student Medical Expense CoverageAdvice, Support and a LifelineWetsuits and heat stressDiving after Chiropractic adjustments
2018
April
Flying after pool diving FAQLung squeeze while freediving FAQDiving after Bariatric surgery FAQMarine injuries FAQVasovagal Syncope unpredictable FAQIncident report procedure FAQDiving after knee surgery FAQDiving when in RemissionDive with orbital Implant FAQInert gas washout FAQOxygen ears FAQPost Decompression sicknessChildren and diving. The real concerns.Diving after SurgeryPhysiology of Decompresssion sickness FAQDiving and regular exerciseGordon Hiles - I am an Underwater Cameraman and Film MakerScuba Air QualityBreath-hold diving. Part 3: The Science Bit!Compensation Legislation and the Recreational DiverCape Town DivingFive pro tips for capturing better images in cold waterThe Boat Left Without You: Now What?
May
When things go wrongEmergency Planning: Why Do We Need It?Breath-hold diving: Running on reserve -Part 5 Learning to RebreatheSweet Dreams: When Can I Resume Diving Post Anaesthesia?Investing in the future of reefsTo lie or not to lie?THE STORY OF A RASH AFTER A DIVEFirst Aid KitsTaravana: Fact or Falacy?
June
Oxygen Unit MaintenanceKnow Your Oxygen-Delivery Masks 1Know Your Oxygen-Delivery Masks 2Emergency Oxygen unitsInjuries due to exposure - HypothermiaInjuries due to exposure - Altitude sicknessInjuries due to Exposure - Dehydration and other concernsHow to plan for your dive tripThe Future of Dive MedicinePlastic is Killing our ocean
September
Return to DivingDiagnoses: Pulmonary blebSide effects of Rectogesic ointmentDiving with ChemotherapyReplacing dive computers and BCDsCustomize Your First-Aid KitPlan for medical emergenciesHow the dive Reflex protects the brain and heartDry suits and skin BendsAltitude sickness and DCSScuba Diving and Life Expectancy
2017
March
April
Incident Insight: TriageA Field Guide to Minor MishapsSnorkels: Pros & ConsTime & RecoveryMedication & Drug UseDiving with CancerNitrox FAQCOPD FAQHyperbaric Chamber FAQJet Lag FAQHydration FAQAnticoagulant Medication FAQFluid in the Ear FAQEye Surgery FAQElderly Divers FAQNitrogen FAQHealth Concerns FAQMotion Sickness FAQMicronuclei FAQ
June
August
2016
February
March
Breath-Hold Diving & ScubaReturn to Diving After DCITiming Exercise & DivingHot Tubs After DivingSubcutaneous EmphysemaIn-Water RecompressionDiving at AltitudeFlying After DivingDiving After FlyingThe Risks of Diabetes & DivingFlu-like Symptoms Following a DiveHand & Foot EdemaFrontal HeadachesBladder DiscomfortLatex AllergiesRemember to BreatheProper Position for Emergency CareAches & PainsCell Phones While DrivingSurfers Ear Ear Ventilation TubesDealing with Ear ProblemsDiving with Existing Ear InjuriesPerforated Ear DrumENT SurgeryUnpluggedCochlear ImplantsPortuguese Man-of-WarJellyfish StingsLionfish, Scorpionfish & Stonefish EnvenomationsStingray Envenomation Coral Cuts, Scrapes and RashesSpeeding & Driving Behaviour
June
Newsflash! Low Pressure Hose DeteriorationItching & rash go away & come back!7 Things we did not know about the oceanMigraine HeadacheAttention Deficit Disorder Cerebral Vascular AccidentEpilepsyCerebral PalsyHistory of SeizuresMultiple Sclerosis Head TraumaBreast Cancer & Fitness to Dive IssuesLocal Allergic ReactionsSea LiceHow ocean pollution affects humans Dive Fatality & Lobster Mini-Season StatisticsPregnancy & DivingReturn to Diving After Giving BirthBreast Implants & DivingMenstruation During Diving ActivitiesOral Birth ControlBreast FeedingPremenstrual SyndromeOsteoporosisThe Aftermath of Diving IncidentsCompensation Legislation & the Recreational DiverNoise-Induced Hearing LossLegal MattersThe Nature of Liability & DivingDAN Legal NetworkWaivers, Children & Solo DivingHealthy, but overweight!Taking Medication while Scuba DivingGetting Fit for the Dive SeasonBone Considerations in Young DiversAsthma and Scuba DivingHepatitisDiving with HyperglycemiaShoulder PainDiving After Spinal Back Surgery
August
Hazard Identification & Risk AssessmentCaring For Your People Caring For Your FacilitiesCaring For Your BusinessScuba Air Quality Part 1Scuba Air Quality Part 2Chamber Maintenance Part 1Chamber Maintenance Part 2The Aging Diver Propeller SafetyRelease The PressureDon't Get LostMore Water, Less Bubbles13 Ways to Run Out of Air & How Not To7 Mistakes Divers Make & How To Avoid ThemSafety Is In The AirHow Good Is Your Emergency Plan
2015
January
March
2 Comments
Error in paragraph 5. looks like something was left out. Last part of paragraph does not make sense as it stands.