Sight Search

Challenging the Frontiers of Decompression Research

Weigang Xu

By Frauke Tillmans, Ph.D.

There is increasing need for dive physicians, treatment facilities and research. Weigang Xu, M.D., Ph.D., current director of the Department of Diving and Hyperbaric Medicine at the Military Medical University in Shanghai, is well-known in the field. He has worked as a dive physician since 1995; he received his doctorate in dive medicine in 2003 and became a professor in 2012.
 Describing Xu’s research focus is a challenging task because his group has considered most aspects of current decompression theory. Staffed with a team of 10 researchers, his laboratory works on prevention and treatment of decompression sickness (DCS) on a cellular level as well as in animal models and human divers.

The effect of decompression on blood vessels (vascular endothelial function) has been observed for many years, but the mechanism of injury is still disputed. How did you investigate the underlying causes of endothelial dysfunction?
Dr. Xu designed this dive training pool where scuba diving and surface-supplied diving and medical aid can be taught. We conducted a series of experiments using strictly controlled DCS models and in vitro vascular bubble perfusion technique and proved that endothelial dysfunction following decompression is indeed linearly correlated to bubbles. However, there does not seem to be a measurable correlation with pressure or oxygen partial pressure in hyperbaric exposure.

Compared with common clinical diseases, the pathogenesis of DCS is distinct, with considerably fewer cases. The study on the etiology, prevention and treatment of DCS is therefore highly dependent on small animal models. What models did you find most practical for working on DCS?
Our current DCS small animal models are rats and rabbits. We are constantly improving these models to adapt to the research questions we ask. A strain of rats is usually easy to control, and the gene pool is generally very stable. A study of pathogenesis based on the rat DCS model is much more feasible, easy and cost effective than it could ever be in humans. Rabbits are of moderate body size, and their vasculature and anatomical features in eyes, ears and spinal cord are suitable for the study of microcirculation changes and the mechanism of spinal cord injury in DCS.

Humans are obviously not rodents, so it is not possible to translate these research findings directly to human physiology. To overcome this problem, you are also working with a swine model. What advantages does a swine model have?
In non-primates, swine are probably most similar to humans in terms of gene level, anatomical structure and physiological characteristics. They are especially beneficial for studies involving pathogenesis of skin DCS. We systematically observed the development and evolution of DCS skin symptoms in swine, studied the relationship between skin lesions, central nervous system dysfunction and arterial bubbles, and analysed the correlation between the amount of circulating bubbles, biochemical indicators and skin lesions. These results provided the necessary basis for the use of skin manifestation as a non-invasive evaluation tool for DCS.

How does this research translate to human physiology?
We currently develop decompression algorithms for different animals, which can be used not only to result in DCS with expected incidence rate but also to help increase the understanding of deduction rules between different decompression models and ultimately between animal models and human divers. We are developing new decompression profiles, prevention and treatment measures for DCS. This is basically a stepped research system starting with an initial effect evaluation in the rat model, progressing to effect and safety evaluation using the rabbit and concluding with the swine model. While not directly translatable, this system provides a solid basis for ongoing research in human divers.

To study the effect of bubbles on blood vessels in more detail, you have developed a new system for in vitro vascular bubble perfusion. What do you hope to achieve with this system?
The system can perfuse a segment of blood vessel using liquid with microbubbles at specific density and size as required. This process provides conditions for in-depth observation of the effect of bubbles on endothelial and vascular function. With this system we were also able to explore protective effects of different substances on vascular and endothelial lesions caused by the introduced bubbles.

What are your main targets when exploring the biomarkers of decompression stress?
We screen different molecules such as endothelin (sensors constricting blood vessels and increasing blood pressure), markers for oxidative stress (e.g., malondialdehyde) and adhesion molecules, which are involved in the interaction between blood vessel wall and immune cells (e.g., intercellular adhesion molecule 1, or ICAM-1). All these markers can reflect the severity of decompression stress, and we observed changes in these markers existing up to three to four days after experimental dives. We studied the time course of these stress markers as well as their correlation to bubble formation and were able to construct a retrieval table for the relationship between the level of each parameter and the amount of bubbles at different times after the onset of DCS symptoms. We accumulated the values of the parameters from rat, rabbit and swine models to complete the retrieval table. These tables could have great potential to understand and mitigate decompression stress in human divers as well.
Precisely. We have also collected parameters such as these in divers with DCS with the goal of developing an index table that can evaluate their severity of decompression stress. The levels of endothelial biomarkers at different time points after diving might serve as simple yet sensitive parameters in the assessment of bubble load and decompression stress. This time course can provide necessary information about the onset and recovery of DCS endothelial injury.

A lot of research is focusing on preconditioning — things you can do before the dive to decrease decompression stress and the risk of DCS. What were the major findings from your work on nutrition and hyperbaric oxygen (HBO) preconditioning?
As for nutritional supplements, we worked with a rat and swine model to see whether escin (horse chestnut extract) used as an endothelial protection agent would reduce decompression stress. Escin showed the capacity to significantly reduce DCS occurrence and severity in the models. We published these promising results but have yet to do further investigations in human divers.

We also explored the effects of HBO preconditioning and found that a single exposure to HBO more than 10 hours before diving could effectively alleviate incidence and pathogenesis of DCS in rats. This outcome was associated with the induction of heat shock proteins (HSPs), which is another marker for oxidative stress. This preconditioning protection is also effective for in vitro neurons. HBO functions mostly via free radical induction, but the exact source of subcellular free radicals (reactive oxygen species, or ROS) has not been studied in depth. Through specific fluorescent ROS probes and inhibitors to ROS-generating pathways, we developed an algorithm that can evaluate the source of intracellular ROS under both hyperbaric hyperoxia and normal conditions.

We completed one study on HBO preconditioning in our swine DCS model, which further confirmed the involvement of HSPs in the pathogenesis of DCS. A trial comparing simulated (hyperbaric chamber) and real diving on human divers is currently underway.
Speaking of dive algorithms, what is your involvement in the optimization of dive tables?
To optimize the decompression tables currently in use and improve the efficiency and safety of dive operations in recreational and military divers, we have adapted decompression algorithms and decompression profiles. We developed and tested a new heliox dive table in more than 500 dives at sea. We are still working on an association study based on the observations from different animal models and studies with divers.

Can you tell us about the Expert System for Safe Diving and how it can be used?
The system covers various aspects of dive safety and health management, including operation plans, risk control, operation standards, process management, accident treatment, equipment management, personnel management and accident reporting. The system will play a significant role in the improvement of efficiency and safety for underwater operations.
As the team leader, I have been responsible for the medical support for saturation dive tests, heliox dive training and emergency dive operations for many years. This also led me to establish the Diving Occupational Health Committee to improve the health management and service for the dive industry. This committee drafted more than 10 industry norms that play an important role in dive-related occupational health administration in China today. Commercial and military diving has become very safe, but we still see numerous DCS cases in recreational divers.

Are you a diver?
I’ve been a diver since 1995, but between research, teaching, my regular exercise and active duty, it is hard for me to find the time to frequently get into the water. I am passionate about diving as a sport and am involved in developing a scuba training system and dive health service for China. We just established Treatment Alliance for DCS (TAD) to improve the comprehensive ability to treat dive-related diseases and provide help for occupational and recreational divers. I just finished the improvement of DCS treatment tables used in China to make them more feasible for hyperbaric physicians. I hope to continue supporting the growth of the sport in China.

© Alert Diver — Q2 Spring 2019


immersion and bubble formation Accidents Acid reflux Acute ailments After anaesthesia Air Quality Air exchange centre Air hose failure Airway control Air Alert Diver Magazine Alternative gas mix Altitude changes Altitude sickness Aluminium Oxide Ama divers Amino acids Anaerobic Metabolism Annual renewal Apnea Apnoea Archaeology Arterial gas embolism Arthroscopic surgery Aspirin Aurel hygiene BCD BHP BLS BWARF Back adjustment Back pain Back treatment Backextensors Badages Bag valve mask Bahamas Balancing Bandaids Barbell back squat Barometric pressure Barotrauma Basic Life Support Batteries Bench press Benign prostate hyperplasia Beth Neale Black Blood flow Blood thinners Blue Wilderness Blurred vision Boat safety Bone fractures Bouyancy compensators Boyle's Law Boyle\'s Law Bradycardia Brain Breast Cancer Breath Hold Diving Breath holding Breath hold Breath-hold Breathing Gas Breathing gas contamination Breathing Breathold diving Broken bones Bruising Bubbleformation Buddy Exercise Buddy checks Buoyancy Burnshield CGASA CMAS CO2 COVID-19 COVID CPR Cabin pressure Caissons diseas Camera settings Cancer Remission Cancer treatments Cancer Cannabis and diving Cannabis Cape Town Dive Festival Cape Town CapeTown Carbon Monoxide Carbon dioxide Cardio health Cardiological Cardiomyopathy Chamber Safety Chamber science Charging batteries Charles' Law Charles\' Law Charles\\\' Law Charles\\\\\\\' Law Charles\\\\\\\\\\\\\\\' Law Charlie Warland Chemotherapy Chest compressions Chiropractic Chlorophll Citizen Conservation Cleaning products Coastalexcursion Cold Water Cold care ColdWater Cold Commercial diving Commercial schools Compressed Air Compressed gas Consercation Conservation Contaminants Contaminated air Coral Conservation Coral Reefs Coral bleaching Corals Core strength Corona virus Courtactions Crohns disease Crowns Crystal build up Crystallizing hoses Cutaneous decompression DAN Courses DAN Profile DAN Researchers DAN medics DAN members DAN report DCI DCS Decompressions sickness DCS theories DCS DEMP DM training DNA DReams Dalton's Law Dalton\'s Law Dalton\\\'s Law Dalton\\\\\\\'s Law Dalton\\\\\\\\\\\\\\\'s Law Danel Wenzel Dauin island Dean's Blue Hole Deco dives Decompression Illness Decompression Sickness Decompression Stress Decompression illsnes Decompression treatment Decompression Deep diving Deep water exploration Delayed Offgassing Dental Diaphragms Diseases Dive Chamber Dive Computer Dive Destinations Dive H Dive Industry Dive Instruction Dive Instructor Dive Medical Form Dive Medical Dive Pros Dive Research Dive South Africa Dive Training Dive Travel Dive accidents Dive buddies Dive computers Dive excursions Dive fitness Dive gear Dive heallth Dive health Dive medicines Dive medicine Dive operators Dive planning Dive safety Dive safe Dive staff DiveLIVE Diveleader training Diveleaders Diver Health Diver Profile Diver infliencers Diver on surface Divers Alert Diving Divas Diving Kids Diving Trauma Diving career Diving emergencies Diving emergency management Diving fit Diving guidelines Diving injuries Diving suspended Diving Dizziness Dolphins Domestic Donation Dowels Dr Rob Schneider Drysuit diving Drysuit valves Drysuits Dyperbaric medicines EAPs EAP Ear pressure Ear wax Ears injuries Eco friendly Education Electronic Emergency action planning Emergency decompression Emergency plans Emergency underwater Oxygen Recompression Emergency Enviromental Protection Environmental factors Environmental impact Environmental managment Equalisation Equipment care Evacuations Evacuation Evaluations Even Breath Exercise Exhaustion Extended divetime Extinguisher Extreme treatments Eye injuries FAQ Factor V Leiden Failures Fatigue Faulty equipment Female divers Fillings Fire Coral Fire Safety Firefighting First Aid Equipment First Aid Kit First Aid Training First Aid kits Fish Identification Fish Fitness Training Fitness to dive Fitness Flying Fractures Francois Burman Fredive Free Student cover Free diving Free flow Freedive INstructor Freedive Training Freediver Freediving performance Freediving Gas Density Gas consumption Gas laws Gas mixes GasPerformance Gases Gastoeusophagus Gastric bypass Gastroenterologist Gear Servicing Gordon Hiles Great White Sharks Gutt irritations HCV HELP HIRA HMS Britanica Haemorhoid treatment Hazard Description Hazardous Marine life Hazardous marinelife Health practitioner Heart Attack Heart Health Heart Rate monitor Heart rates Heart rate Heart Heat stress Helium Hepatitis C Hepatitus B High temperatures Hip strength Hip surgery Hippocampus History Hot Humans Hydrate Hydration Hydrogen Hydroids Hydrostatic pressure Hyperbaric Chamber Hyperbaric research Hyperbarics Hypothermia Hypoxia IdentiFin Immersion Immine systems In Water Recompression Indemnity form Indian Ocean Indonesia Inert gas Infections Infra red Imaging Injections Instinct Instruction Instructors Insurance Integrated Physiology International travel International Interval training Irritation Joint pain Junior Open Water Diver KZN South Coast Kidneys Kids scubadiver KwaZulu Natal Labour laws Laryngospasm Lauren Arthur Learning to dive Legal advice Legislation Leukemis Liability Risks Liability releases Liability Life expectancy Lifestyle Lightroom editing Live aboard diving Liver Toxicity Liver diseas Low blood pressure Low pressure deterioration Low volume masks Lung Irritation Lung function Lung injuries Lung squeeze Lung surgery Lung MOD Maintenance Malaria Mammalian Dive Response Mammalian effect Marine Biology Marine Scientists Marine conservation Marine parks Marinelife Masks Master scuba diver Maximum operating depth Medical Q Medical emergencies Medical questionaire Medical statement Medication Mehgan Heaney-Grier Mermaid Danii Mesophotic Middle ear pressure Mike Bartick Military front press Mixed Gas Mono Fins Mooring lines More pressure Motion sickness Mozambique Muscle pain Mycobacterium marinum Nausea Nautilus Neck pain Neurological assessments Nitrogen Narcosis Nitrogen build up Nitrox No-decompression Non-rebreather Mask Normal Air Nosebleeds O2 providers O2 servicing OOxygen maintenance Ocean Research Ocean pollution Oil contamination Open water divers Orbital implants Oronasal mask Osteonecrosis Out and about Outreach Oxygen Cylinder Oxygen Units Oxygen deficit Oxygen deicit Oxygen dificiency Oxygen ears Oxygen equipment Oxygen masks Oxygen supply Oxygen therapy Oxygen P J Prinsloo PFI PJP Tech Part 3 Partner Training Philippine Islands Philippines Phillipines Photography Physioball Physiology Physiotherapy Pills Pistons Planning Plastic Pneumonia Pneumothorax Poison Pollution Pool Diving Post-dive Pre-dive Predive check Preparation Prepared diver Press Release Professional rights Provider course Psycological Pulmanologist Pulmonary Bleb Pulmonary Edema Pulse Punture wounds Pure Apnea Purge RAID South Africa RCAP REEF Radio communications Range of motion Rashes Rebreather diving Rechargeable batteries. Recompression chamber Recompression treatment Recompression Recycle Reef Conservation Reef surveyors Regulator failure Regulators Regulator Remote areas Renewable Report incidents Rescue Procedure Rescue breathing Rescue breaths Rescue training Rescue Resume diving Return to diving Risk Assessments Risk assesments Risk assessment Risk elements Risk management SABS 019 SafariLive Safety Stop Safety SaherSafe Barrier Salty Wanderer Sanitising Sara Andreotti Saturation Diving Save our seas Science Scombroid Poisoning Scuba Air Quality Scuba Injury Scuba Instructor Scuba children Scuba dive Scuba health Scubalearners Sea Horses Sealife Shark Protection Shark Research Shark conservation Shark diving Sharks Shoulder strength Sideplank Signs and Symptoms Sit-ups Skin Bends Skin outbreak Skin rash Snorkeling Snorkels Social Distancing Sodwana Bay Solomon Islands South Africa Spinal pain Splits Squeezes Stability exercise Standars Stay Fit Stents Step ups Stepping up Stroke Submerged Sudafed Sulawesi Supplemental oxygen Surface supplied Air Surfaced Surgeries Surgery Suspension training TRavel safety Tabata protocol Talya Davidoff Tattoes Technical Diving The Bends The truth Thermal Notions Tides Tips and trick Tooth squeeze Transplants Travel smarter Travel tips Travel Tropical Coastal Management Tunnelling Tweezers Ultrsound Umkomaas Unconsciousness Underground work Underwater hockey Underwater photographer Underwater photography Underwater pho University of Stellenbosch Urinary retention. Vaccines Vagus nerve Valsalva manoeuvers Vape Vaping Vasopressors Vasvagal Syncope Venting Virus infections Volatile fuels Washout treatments Wastewater Watchman device Water Resistance Water Weakness Weigang Xu Weights West Papua Wet diving bell Wetsuit fitting Wetsuits White balance Wide angles Winter Woman in diving Women In Diving SA Women in diving Work of Breathing Workout Wound dressings Wreck divers Wreck dive Wreckdiving Wrecks Yoga Youth diver Zandile Ndholvu Zoology abrasion acoustic neuroma excision air-cushioned alert diver altitude anemia antibiotics anticoagulants antiseptics bandages barodontalgia bent-over barbell rows bioassays body art breathing air calories burn carbon dioxide toxicity cardiovascular cerebrospinal fluid checklist chemo port child clearances closed circuit scuba currents cuts dead lift decompression algorithms decongestants decongestion dehydration dive injuries dive medicing dive ready child dive reflex dive tribe diver in distress diver rescue diver training dive diving attraction doctors domestic travel dri-suits drowning dry mucous membranes dry suits dry e-cigarettes ear spaces elearning electrolyte imbalance electroytes emergency action plans emergency assessment equalising equalizing exposure injuries eyes fEMAL DIVERS fire rescue fitnes flexible tubing frediving freedivers gas bubble gas poisoning gastric acid gene expression health heartburn histidine hospital humidity immersion and bubble formation immersion pulmonary edema (IPE jaundice join DAN knee longevity lower stress malaise marine pathogens medical issues medical procedures medical risk assesment medications mental challenge micro-organisims minor illness mucous membranes nasal steroids nasal near drowning nematocysts neurological newdivers nitrogen bubbles off-gassed operating theatre operations orthopeadic outgas pain perforation phillippines physical challenges pinched nerves plasters polyester-TPU polyether-TPU post dive posture preserve prevention psychoactive pulmunary barotrauma rebreather mask rebreathers retinal detachment risk areas safety stops saturation scissors scuba equipment scuba single use sinus infections smoking snorkeling. spearfishing sterilising stings strength sub-aquatic swimmers ears tattoo care tecnical diver thermal protection toxicity training trimix unified standards vision impaired warmers water quality