Zeljko Dujic: Finding his niche in Breath-hold Research

A leading expert in breath-hold diving physiology, Professor Zeljko Dujic, M.D., Ph.D., is head of the department of integrative physiology at the University of Split in Croatia. He graduated from the University of Zagreb School of Medicine in 1983 and received his doctorate from the Medical College of Wisconsin.
Over the past few decades Dujic has been a member of several scientific committees in Croatia and has taught physiology at the University of Split School of Medicine full time since 1988. He is also in charge of the university’s evidence-based-medicine doctoral study program and coordinates the international doctoral program. He and researchers at his laboratory have published numerous highly esteemed scientific papers on breath-hold diving and scuba diving. To help commemorate Dujic’s 30th year at the University of Split, we met with him to discuss his research.
Over the past few decades Dujic has been a member of several scientific committees in Croatia and has taught physiology at the University of Split School of Medicine full time since 1988. He is also in charge of the university’s evidence-based-medicine doctoral study program and coordinates the international doctoral program. He and researchers at his laboratory have published numerous highly esteemed scientific papers on breath-hold diving and scuba diving. To help commemorate Dujic’s 30th year at the University of Split, we met with him to discuss his research.

What sparked your interest in dive research?
Split University Hospital used to be a military hospital, and then the main focus was on navy divers and saturation diving in the commercial diving industry, so my research began in those areas. In 1992 the hospital became civilian and was integrated into the University of Split. When the source of funding and the availability of the hyperbaric chamber changed, so did our research questions. At that time, dive research in Europe appeared to be fading: Commercial diving had previously sponsored dive research for many years, but research funding declined along with the industry.
To expand our efforts despite these trends, we reached out to some excellent people in the field and started working with a group under Professor Alf Brubakk from Trondheim, Norway. A few doctoral students from Norway worked with us on bubble measurements, taking echocardiographs of scuba divers before and after dives, with and without exercise.
Some of your most cited dive research focuses on exercise physiology, and your team has examined the effects of physical exercise before and after diving. What advancements do you hope to achieve with your findings?
It is still difficult to assess the personal risk of someone developing decompression sickness (DCS) after a dive. We have focused on bubble grades, and it is still commonly accepted that high bubble grades after diving correlate with a higher risk for DCS. We found that high-intensity interval training up to two hours before the dive seems to reduce bubbles after the dive, while exercise after a dive increases bubble grades. It is important to understand that being a “high bubbler” is one risk, but the personal risk increases if the diver has right-to-left-shunting pathways. The best known of these shunts is a patent foramen ovale (PFO), but we have also shown that people can have lung shunts, also called intrapulmonary arteriovenous anastomoses (IPAVAs). In some divers these IPAVAs open more easily than in others — in some cases with little workload or even while resting. We assume that not only the heart and the lungs have these shunts but also that every organ in the body has a kind of shunting mechanism that allows blood, and therefore bubbles, to pass from the venous to the arterial side. A standard test battery to determine if a diver has a higher risk for postdive bubbles doesn’t yet exist, but this might be one step on the way to personalized decompression.
You speak about high and low bubble grades, but in your experiments you found that some divers never bubble and some always do. Can these two cohorts of bubblers and nonbubblers be used as a model to study?
Those two groups are indeed interesting. In our experiments most divers were inconsistent, but 15 percent of the divers never bubbled, and another 10 percent always bubbled. Of the volunteers who dive for us, we can easily isolate a group of all bubblers if we want to test a mechanism, such as exercise, that may reduce bubbles. We cannot currently explain the difference between bubblers and nonbubblers, and this remains a question of great interest in the dive community, as it seems to be multifactorial. It is likely influenced by the condition of the endothelium (which lines the inner walls of the blood vessels), the immune system and genetic predisposition, among other things. Different groups are investigating these factors, and so far the results have been inconclusive.
Split University Hospital used to be a military hospital, and then the main focus was on navy divers and saturation diving in the commercial diving industry, so my research began in those areas. In 1992 the hospital became civilian and was integrated into the University of Split. When the source of funding and the availability of the hyperbaric chamber changed, so did our research questions. At that time, dive research in Europe appeared to be fading: Commercial diving had previously sponsored dive research for many years, but research funding declined along with the industry.
To expand our efforts despite these trends, we reached out to some excellent people in the field and started working with a group under Professor Alf Brubakk from Trondheim, Norway. A few doctoral students from Norway worked with us on bubble measurements, taking echocardiographs of scuba divers before and after dives, with and without exercise.
Some of your most cited dive research focuses on exercise physiology, and your team has examined the effects of physical exercise before and after diving. What advancements do you hope to achieve with your findings?
It is still difficult to assess the personal risk of someone developing decompression sickness (DCS) after a dive. We have focused on bubble grades, and it is still commonly accepted that high bubble grades after diving correlate with a higher risk for DCS. We found that high-intensity interval training up to two hours before the dive seems to reduce bubbles after the dive, while exercise after a dive increases bubble grades. It is important to understand that being a “high bubbler” is one risk, but the personal risk increases if the diver has right-to-left-shunting pathways. The best known of these shunts is a patent foramen ovale (PFO), but we have also shown that people can have lung shunts, also called intrapulmonary arteriovenous anastomoses (IPAVAs). In some divers these IPAVAs open more easily than in others — in some cases with little workload or even while resting. We assume that not only the heart and the lungs have these shunts but also that every organ in the body has a kind of shunting mechanism that allows blood, and therefore bubbles, to pass from the venous to the arterial side. A standard test battery to determine if a diver has a higher risk for postdive bubbles doesn’t yet exist, but this might be one step on the way to personalized decompression.
You speak about high and low bubble grades, but in your experiments you found that some divers never bubble and some always do. Can these two cohorts of bubblers and nonbubblers be used as a model to study?
Those two groups are indeed interesting. In our experiments most divers were inconsistent, but 15 percent of the divers never bubbled, and another 10 percent always bubbled. Of the volunteers who dive for us, we can easily isolate a group of all bubblers if we want to test a mechanism, such as exercise, that may reduce bubbles. We cannot currently explain the difference between bubblers and nonbubblers, and this remains a question of great interest in the dive community, as it seems to be multifactorial. It is likely influenced by the condition of the endothelium (which lines the inner walls of the blood vessels), the immune system and genetic predisposition, among other things. Different groups are investigating these factors, and so far the results have been inconclusive.
In the past few years your focus has shifted more toward breath-hold diving. What attracts you to that area of study?
Breath-hold diving is unique, and that is a big advantage. You must find your niche — something that no one else is working on. We accidentally found this breath-hold niche when talking to some aging spear-fishermen. They wanted to know more about their activity, and no other laboratories have gone to the depth of understanding physiological variation in breath-hold divers. Having this niche also means we can get published in very good journals. Our model attracts scientists from all over the world who want to collaborate in different fields of integrative human physiology. These groups usually come to Split for a few weeks to do experiments with our divers, and they often bring a few young researchers to the team. Some of these young doctoral students have stayed in the field and are still collaborating with us.
Apnea is voluntary hypoxia (lack of oxygen), and the brain is the most susceptible organ to hypoxia. What happens in the brain if someone does a seven-minute breath hold?
During apnea we see different phases, starting with hypotension and markedly reduced cerebral blood flow sometimes leading to unconsciousness, ending with a high cerebral blood flow (up to a 70–110 percent increase from the baseline), a 30–40 percent increase in blood pressure and extreme hypoxia going to arterial saturation below 70 percent. When the brain goes into this hypoxia it is almost like entering a kind of hibernating state. Scientists generally assume that the brain is protective against this kind of hypoxic stress, but it might not be protective enough. People whose brains are not gradually acclimatized to this stress will not survive a breath-hold of this duration. With different collaborators we are investigating protein/neuronal adaptations during such extreme physiological stress.
To see how the nervous system is reacting, we use an invasive technique to measure sympathetic tone (a stress response that can increase heart rate and constrict blood vessels) in the spine. We observe a sympathetic neuroactivation in long apnea phases where recruitment shifts from smaller to larger neurons. This is comparable to muscle recruitment during exercise, where we start with red muscle and then gradually recruit white muscle fiber. Interestingly, this change in sympathetic tone is similar to what happens in patients with chronic heart failure, which does not have any reliable early indicators. What we learn from this research with our voluntary breath-hold divers can potentially be used to help severely sick patients in cardiology.
Breath-hold divers, especially the world-record athletes who work with you, are a very small community, but your research now covers a much broader field. How does your research translate to other fields of medicine?
We found that a lot of what we see in breath-hold divers can be translated to serious diseases such as obstructive sleep apnea, which has no early warning signs. People who suffer from end-expiratory obstructive sleep apnea are usually resistant to medication for arterial hypertension. When they stop breathing during sleep, their oxygen saturation rapidly declines — sometimes to 50 percent within 30 seconds. What we learn from our group of apneists might translate to millions of patients with this disease.
There are also connections to people with Type II diabetes, because they can suffer hypoperfusion, or reduced blood flow to the brain, just like we see after several minutes of apnea. In apnea this condition is obviously reversible, but when we studied this reduction in cerebral blood flow we found that the brain started producing more ketone bodies — molecules that are produced when the body switches from breaking down carbohydrates to breaking down glucose as a major energy source. This process seems to increase blood flow to the brain by approximately 30 percent.
Looking at this increased blood flow due to higher ketone levels, a supplementation with ketones might be a valid intervention for stroke patients as well, where we find about a 30 percent decrease in cerebral blood flow. In the end it all seems to come down to the brain as a main coordinating organ in the body.
Where do you see the focus of dive research — both scuba and apnea — in the next 10 years?
There are still many unanswered questions about both scuba and breathhold diving. We are missing a lot of information about whole body response in integrative physiology. Concerning recompression, it might come to a point where divers can learn their individual risk factors at a
checkup exam, be it shunting mechanisms or components in the blood and immune system. Divers could be tested for their predisposition to producing bubbles in a few standardized test dive profiles. These developments could lead to personalized recommendations on how to avoid high bubble grades and dive conservatively. As people get older and still want to dive, we should study more about the effects of aging. We also don’t know much about women and diving, because most research has been done with military divers, who were exclusively men in earlier years.
For only a very few days during the menstrual cycle — in the early follicular phase — can the physiological responses of women be compared to those of men, therefore our window to conduct comparative research is shortened. Another topic of interest is children who dive; more children are now becoming divers, but their physiology under pressure in water is not well-studied. In research for breath-hold diving, more neuroimaging will likely be done before, during and after apnea. More field research is necessary to gather more data during the actual dives and to study mechanisms that we cannot simulate in the lab, such as heart-rate changes due to the mammalian dive reflex, the fatiguing mechanisms in respiratory and other muscles, the effect of repetitive dives, the mechanic force on the thorax under pressure and how all of these items affect brain function and perfusion.
With so many items on your to-do list, do you still make time to get in the water for fun? Do you have other hobbies that can distract you from work?
I have never been scuba certified, but I have always had a passion for apnea diving and spear fishing, so I am getting my guns ready for summer season. We visit a little summer house down the coast, and we have a little dog, if you consider those things as hobbies. I am fortunate that I consider my work as a hobby. It is very rewarding to work with all these talented people, especially the young scientists who come to our lab. My wife constantly complains that my head never stops working, and it’s true. I have ideas for new experiments all the time, and my ideas do not take breaks, even for holidays. AD
Breath-hold diving is unique, and that is a big advantage. You must find your niche — something that no one else is working on. We accidentally found this breath-hold niche when talking to some aging spear-fishermen. They wanted to know more about their activity, and no other laboratories have gone to the depth of understanding physiological variation in breath-hold divers. Having this niche also means we can get published in very good journals. Our model attracts scientists from all over the world who want to collaborate in different fields of integrative human physiology. These groups usually come to Split for a few weeks to do experiments with our divers, and they often bring a few young researchers to the team. Some of these young doctoral students have stayed in the field and are still collaborating with us.
Apnea is voluntary hypoxia (lack of oxygen), and the brain is the most susceptible organ to hypoxia. What happens in the brain if someone does a seven-minute breath hold?
During apnea we see different phases, starting with hypotension and markedly reduced cerebral blood flow sometimes leading to unconsciousness, ending with a high cerebral blood flow (up to a 70–110 percent increase from the baseline), a 30–40 percent increase in blood pressure and extreme hypoxia going to arterial saturation below 70 percent. When the brain goes into this hypoxia it is almost like entering a kind of hibernating state. Scientists generally assume that the brain is protective against this kind of hypoxic stress, but it might not be protective enough. People whose brains are not gradually acclimatized to this stress will not survive a breath-hold of this duration. With different collaborators we are investigating protein/neuronal adaptations during such extreme physiological stress.
To see how the nervous system is reacting, we use an invasive technique to measure sympathetic tone (a stress response that can increase heart rate and constrict blood vessels) in the spine. We observe a sympathetic neuroactivation in long apnea phases where recruitment shifts from smaller to larger neurons. This is comparable to muscle recruitment during exercise, where we start with red muscle and then gradually recruit white muscle fiber. Interestingly, this change in sympathetic tone is similar to what happens in patients with chronic heart failure, which does not have any reliable early indicators. What we learn from this research with our voluntary breath-hold divers can potentially be used to help severely sick patients in cardiology.
Breath-hold divers, especially the world-record athletes who work with you, are a very small community, but your research now covers a much broader field. How does your research translate to other fields of medicine?
We found that a lot of what we see in breath-hold divers can be translated to serious diseases such as obstructive sleep apnea, which has no early warning signs. People who suffer from end-expiratory obstructive sleep apnea are usually resistant to medication for arterial hypertension. When they stop breathing during sleep, their oxygen saturation rapidly declines — sometimes to 50 percent within 30 seconds. What we learn from our group of apneists might translate to millions of patients with this disease.
There are also connections to people with Type II diabetes, because they can suffer hypoperfusion, or reduced blood flow to the brain, just like we see after several minutes of apnea. In apnea this condition is obviously reversible, but when we studied this reduction in cerebral blood flow we found that the brain started producing more ketone bodies — molecules that are produced when the body switches from breaking down carbohydrates to breaking down glucose as a major energy source. This process seems to increase blood flow to the brain by approximately 30 percent.
Looking at this increased blood flow due to higher ketone levels, a supplementation with ketones might be a valid intervention for stroke patients as well, where we find about a 30 percent decrease in cerebral blood flow. In the end it all seems to come down to the brain as a main coordinating organ in the body.
Where do you see the focus of dive research — both scuba and apnea — in the next 10 years?
There are still many unanswered questions about both scuba and breathhold diving. We are missing a lot of information about whole body response in integrative physiology. Concerning recompression, it might come to a point where divers can learn their individual risk factors at a
checkup exam, be it shunting mechanisms or components in the blood and immune system. Divers could be tested for their predisposition to producing bubbles in a few standardized test dive profiles. These developments could lead to personalized recommendations on how to avoid high bubble grades and dive conservatively. As people get older and still want to dive, we should study more about the effects of aging. We also don’t know much about women and diving, because most research has been done with military divers, who were exclusively men in earlier years.
For only a very few days during the menstrual cycle — in the early follicular phase — can the physiological responses of women be compared to those of men, therefore our window to conduct comparative research is shortened. Another topic of interest is children who dive; more children are now becoming divers, but their physiology under pressure in water is not well-studied. In research for breath-hold diving, more neuroimaging will likely be done before, during and after apnea. More field research is necessary to gather more data during the actual dives and to study mechanisms that we cannot simulate in the lab, such as heart-rate changes due to the mammalian dive reflex, the fatiguing mechanisms in respiratory and other muscles, the effect of repetitive dives, the mechanic force on the thorax under pressure and how all of these items affect brain function and perfusion.
With so many items on your to-do list, do you still make time to get in the water for fun? Do you have other hobbies that can distract you from work?
I have never been scuba certified, but I have always had a passion for apnea diving and spear fishing, so I am getting my guns ready for summer season. We visit a little summer house down the coast, and we have a little dog, if you consider those things as hobbies. I am fortunate that I consider my work as a hobby. It is very rewarding to work with all these talented people, especially the young scientists who come to our lab. My wife constantly complains that my head never stops working, and it’s true. I have ideas for new experiments all the time, and my ideas do not take breaks, even for holidays. AD
Posted in Alert Diver Winter Editions
Tagged with Apnea, Dive Research, Integrated Physiology, Free diving, Breath Hold Diving, Saturation Diving, Hyperbaric Chamber
Tagged with Apnea, Dive Research, Integrated Physiology, Free diving, Breath Hold Diving, Saturation Diving, Hyperbaric Chamber
Categories
2020
January
February
Group Fitness at the PoolHow to Rescue a Distressed diver at the SurfaceHow to manage Near-DrowningNo Sit-ups no problem How to manage MalariaHow to manage Oxygen Deficiency (Hypoxia)What to do when confronted by a sharkHow to manage Scombroid PoisoningHow to perform a Deep Diver RescueHow to perform One-rescuer CPRHow to perform a Neurological Assessment
March
DAN’s Quick Guide to Properly Disinfecting Dive GearCOVID-19 : Prevention Recommendations for our Diving CommunityGermophobia? - Just give it a reasonable thoughtScuba Equipment care – Rinsing and cleaning diving equipmentCOVID-19 and DAN MembershipFurther limitations imposed on travels and considerations on diving activitiesDAN Membership COVID-19 FAQsLancet COVID-19 South African Testing SitesCOVID-19 No Panic Help GuideGetting Decompression Sickness while FreedivingDown in the DumpsCardiovascular Disease and DivingDelayed Off-GassingDiving after Dental surgeryDiving with Multiple MedicationsPygmy Seahorses: Life AquaticAfrica DustCOVID-19 Myth BustersScuba Units Are Not Suitable Substitutes for VentilatorsDisinfection of Scuba Equipment and COVID-19Physioball Stability Exercises
April
COVID-19 AdvisoryScuba Equipment Care - Drying & Storing Your GearTransporting Diving Lights & BatteriesHow to Pivot Your Message During a CrisisTourism Relief FundCOVID-19 Business Support ReviewDiving After COVID-19: What We Know TodayEUBS-ECHM Position Statement on Diving ActivitiesPart 2: COVID-19 Business Support ReviewPress Release
May
Diving in the Era of COVID-19Dive Operations and COVID-19: Prepping for ReturnCOVID-19 & Diving Activities: 10 Safety RecommendationsCOVID-19: Surface Survival TimesThe Philippines at its FinestThe Logistics of ExplorationThe Art of the Underwater SelfieShooter: Douglas SeifertFAQs Answered: Disinfecting Scuba EquipmentStock your First-Aid KitResearch and OutreachCovid-19 ResearchOut of the BlueEffects of Aspirin on DivingThe New Pointy end of DivingDiving and Hepatitis CCaissons, Compressed-Air work and Deep TunnellingPreparing to Dive in the New NormalNew Health Declaration Form Sample Addressing C-19 IssuesDiving After COVID 19: What Divers Need to Know
June
Travel Smarter: PRE-TRIP VACCINATIONSAttention-Deficit/Hyperactivity Disorder and DivingCOVID-19: Updated First Aid Training Recommendations From DANDiving with a Purpose in National Marine SanctuariesStay Positive Through the PandemicFor the Dive Operator: How to Protect Your Staff & ClientsStudying Deep reefs and Deep diversAsking the Right QuestionsLung squeeze under cold diving conditions
July
Dive DeprivationVolunteer Fish Surveys: Engage DiversDAN Member Profile: Mehgan Heaney-GrierTravel Smarter: Don’t Cancel, Reschedule InsteadDive Boat Fire SafetyRay of HopePartner ExercisesDiving at AltitudeAluminium ExposureHip FracturesAcoustic NeuromaGuidelines for Lifelong Medical Fitness to DiveNew Dive Medical Forms
August
Women in Diving: Lauren Arthur, Conservationist & Natural History Story TellerWomen in Diving: Dr Sara Andreotti White Shark ResearcherTiming ExerciseWomen in Diving: The Salty Wanderer, Charlie WarlandWomen in Diving: Beth Neale, Aqua soul of freedivingWomen in Diving: Diving and spearfishing Diva, Jean HattinghWomen in Diving: Zandile Ndhlovu, The Black Mermaid
September
October
Freediving For ScienceStep Exercises with CardioFluorescence Imaging help Identify Coral BleachingChildren and DivingThe Watchman device and divingScuba Diving and Factor V Leiden gene mutationNitrogen Narcosis at shallow depthsOil and Particulates: Safe levels in Breathing Air at depthDive Principles for Coping with COVID-19The Importance of a Predive Safety CheckTalya Davidoff: the 'Plattelandse Meisie' Freediver
2019
February
April
May
DAN Press ReleaseYour Dive Computer: Tips and tricks - PART 1Your Dive Computer: Tips and tricks - PART 2Aural HygieneDCS AheadHow Divers Can Help with coral conservationRed Tide and shellfish poisoningDiving after Kidney DonationDiving with hypertrophic cardiomyopathyEmergency Underwater Oxygen Recompression
June
July
September
October
November
Exercise drills with DowelsHeart-rate TrainingCultivating ConservationTRavel Smarter : Evaluating an unfamiliar Dive operatorChallenging the Frontiers of Decompression ResearchTravel Smarter: Plan for Medical EmergenciesWhen should I call my Doctor?DAN Student Medical Expense CoverageAdvice, Support and a LifelineWetsuits and heat stressDiving after Chiropractic adjustments
2018
April
Flying after pool diving FAQLung squeeze while freediving FAQDiving after Bariatric surgery FAQMarine injuries FAQVasovagal Syncope unpredictable FAQIncident report procedure FAQDiving after knee surgery FAQDiving when in RemissionDive with orbital Implant FAQInert gas washout FAQOxygen ears FAQPost Decompression sicknessChildren and diving. The real concerns.Diving after SurgeryPhysiology of Decompresssion sickness FAQDiving and regular exerciseGordon Hiles - I am an Underwater Cameraman and Film MakerScuba Air QualityBreath-hold diving. Part 3: The Science Bit!Compensation Legislation and the Recreational DiverCape Town DivingFive pro tips for capturing better images in cold waterThe Boat Left Without You: Now What?
May
When things go wrongEmergency Planning: Why Do We Need It?Breath-hold diving: Running on reserve -Part 5 Learning to RebreatheSweet Dreams: When Can I Resume Diving Post Anaesthesia?Investing in the future of reefsTo lie or not to lie?THE STORY OF A RASH AFTER A DIVEFirst Aid KitsTaravana: Fact or Falacy?
June
Oxygen Unit MaintenanceKnow Your Oxygen-Delivery Masks 1Know Your Oxygen-Delivery Masks 2Emergency Oxygen unitsInjuries due to exposure - HypothermiaInjuries due to exposure - Altitude sicknessInjuries due to Exposure - Dehydration and other concernsHow to plan for your dive tripThe Future of Dive MedicinePlastic is Killing our ocean
September
Return to DivingDiagnoses: Pulmonary blebSide effects of Rectogesic ointmentDiving with ChemotherapyReplacing dive computers and BCDsCustomize Your First-Aid KitPlan for medical emergenciesHow the dive Reflex protects the brain and heartDry suits and skin BendsAltitude sickness and DCSScuba Diving and Life Expectancy
2017
March
April
Incident Insight: TriageA Field Guide to Minor MishapsSnorkels: Pros & ConsTime & RecoveryMedication & Drug UseDiving with CancerNitrox FAQCOPD FAQHyperbaric Chamber FAQJet Lag FAQHydration FAQAnticoagulant Medication FAQFluid in the Ear FAQEye Surgery FAQElderly Divers FAQNitrogen FAQHealth Concerns FAQMotion Sickness FAQMicronuclei FAQ
June
August
2016
February
March
Breath-Hold Diving & ScubaReturn to Diving After DCITiming Exercise & DivingHot Tubs After DivingSubcutaneous EmphysemaIn-Water RecompressionDiving at AltitudeFlying After DivingDiving After FlyingThe Risks of Diabetes & DivingFlu-like Symptoms Following a DiveHand & Foot EdemaFrontal HeadachesBladder DiscomfortLatex AllergiesRemember to BreatheProper Position for Emergency CareAches & PainsCell Phones While DrivingSurfers Ear Ear Ventilation TubesDealing with Ear ProblemsDiving with Existing Ear InjuriesPerforated Ear DrumENT SurgeryUnpluggedCochlear ImplantsPortuguese Man-of-WarJellyfish StingsLionfish, Scorpionfish & Stonefish EnvenomationsStingray Envenomation Coral Cuts, Scrapes and RashesSpeeding & Driving Behaviour
June
Newsflash! Low Pressure Hose DeteriorationItching & rash go away & come back!7 Things we did not know about the oceanMigraine HeadacheAttention Deficit Disorder Cerebral Vascular AccidentEpilepsyCerebral PalsyHistory of SeizuresMultiple Sclerosis Head TraumaBreast Cancer & Fitness to Dive IssuesLocal Allergic ReactionsSea LiceHow ocean pollution affects humans Dive Fatality & Lobster Mini-Season StatisticsPregnancy & DivingReturn to Diving After Giving BirthBreast Implants & DivingMenstruation During Diving ActivitiesOral Birth ControlBreast FeedingPremenstrual SyndromeOsteoporosisThe Aftermath of Diving IncidentsCompensation Legislation & the Recreational DiverNoise-Induced Hearing LossLegal MattersThe Nature of Liability & DivingDAN Legal NetworkWaivers, Children & Solo DivingHealthy, but overweight!Taking Medication while Scuba DivingGetting Fit for the Dive SeasonBone Considerations in Young DiversAsthma and Scuba DivingHepatitisDiving with HyperglycemiaShoulder PainDiving After Spinal Back Surgery
August
Hazard Identification & Risk AssessmentCaring For Your People Caring For Your FacilitiesCaring For Your BusinessScuba Air Quality Part 1Scuba Air Quality Part 2Chamber Maintenance Part 1Chamber Maintenance Part 2The Aging Diver Propeller SafetyRelease The PressureDon't Get LostMore Water, Less Bubbles13 Ways to Run Out of Air & How Not To7 Mistakes Divers Make & How To Avoid ThemSafety Is In The AirHow Good Is Your Emergency Plan
2015
January
March